Advertisement

Topics in Catalysis

, Volume 55, Issue 11–13, pp 897–907 | Cite as

Sorbitol Hydrogenolysis Over Ni, Pt and Ru Supported on NaY

  • M. Banu
  • P. Venuvanalingam
  • R. Shanmugam
  • B. ViswanathanEmail author
  • S. Sivasanker
Original Paper

Abstract

The hydrogenolysis of sorbitol into 1,2-propanediol (PD), ethylene glycol (EG) and glycerol (G) was investigated over Ni, Pt and Ru supported on NaY at 220 °C and 60 bar in a batch reactor. Ni(6 %)–NaY was investigated in detail at different process conditions, including its recyclability. Attempts have been made to rationalize the experimentally observed conversion and product selectivity obtained over the different catalysts with results of Density Functional Theory calculations of adsorption energy and bond length changes in sorbitol adsorbed over various planes of Ni, Pt and Ru.

Keywords

Sorbitol Hydrogenolysis Glycerol Glycols Ni–NaY Pt–NaY Ru–NaY 

Notes

Acknowledgments

The authors thank the Department of Science and Technology, New Delhi for financial support.

References

  1. 1.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Green Chem 13:326CrossRefGoogle Scholar
  2. 2.
    Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett 133:167CrossRefGoogle Scholar
  3. 3.
    Ding L, Wang A, Zheng M, Zhang T (2010) Chem Sus Chem 3:818Google Scholar
  4. 4.
    Yang P, Kobayashi H, Fukuoka A (2011) Chinese J Catal 32:716CrossRefGoogle Scholar
  5. 5.
    Käldström M, Kumar N, Murzin DY (2011) Catal Today 167:91CrossRefGoogle Scholar
  6. 6.
    Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J (2012) Renewable Energy 37:192CrossRefGoogle Scholar
  7. 7.
    Clark IT (1958) J Ind Eng Chem 50:1125CrossRefGoogle Scholar
  8. 8.
    Chao JC, Huibers DTA (1982) US Patent 4,366,332, 28 Dec 1982Google Scholar
  9. 9.
    Sohounloue DK, Montassier C, Barbier J (1983) React Kinet Catal Lett 22:391CrossRefGoogle Scholar
  10. 10.
    Montassier C, Menezo JC, Hoang LC, Renaud C, Barbier J (1991) J Mol Catal 70:99CrossRefGoogle Scholar
  11. 11.
    Zhao L, Zhou JH, Sui ZJ, Zhou XG (2009) Chem Eng Sci 65:30Google Scholar
  12. 12.
    Zhou H, Zhang MG, Zhao L, Li P, Zhou XG, Yuan WK (2009) Catal Today 147:S225CrossRefGoogle Scholar
  13. 13.
    Castoldi MCM, Câmara LDT, Monteiro RS, Constantino AM, Camacho L, Carneiro JWdeM, Aranda DAG (2007) React Kinet Catal Lett 91:341Google Scholar
  14. 14.
    Banu M, Sivasanker S, Sankaranarayanan TM, Venuvanalingam P (2011) Catal Commun 12:673CrossRefGoogle Scholar
  15. 15.
    Wojcieszak R, Monteverdi S, Mercy M, Nowak I, Ziolek M, Bettahar MM (2004) Appl Catal A: Gen 268:241CrossRefGoogle Scholar
  16. 16.
    Frenkel D, Smit B (2002) Understanding molecular simulation, 2nd edn. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087CrossRefGoogle Scholar
  18. 18.
    Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Science 220:671CrossRefGoogle Scholar
  19. 19.
    Cerny V (1985) J Optimiz Theory App 45:41CrossRefGoogle Scholar
  20. 20.
    Materials Studio 2.0, Accelrys Inc, San Diego, CA, USAGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PW, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  22. 22.
    Becke ADJ (1993) Chem Phys 98:5648Google Scholar
  23. 23.
    Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  24. 24.
    Vosko SH, Wilk L, Nusair M (1980) J Phys 58:1200Google Scholar
  25. 25.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  26. 26.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  27. 27.
    Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Green Chem 2:89CrossRefGoogle Scholar
  28. 28.
    Anderson JR (1975) Structure of metallic catalysts. Academic Press, New YorkGoogle Scholar
  29. 29.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964CrossRefGoogle Scholar
  30. 30.
    Lehnert K, Claus P (2008) Catal Commun 9:2543CrossRefGoogle Scholar
  31. 31.
    West RM, Tucker MH, Braden DJ, Dumesic JA (2009) Catal Commun 10:1743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Banu
    • 1
    • 2
  • P. Venuvanalingam
    • 2
  • R. Shanmugam
    • 1
  • B. Viswanathan
    • 1
    Email author
  • S. Sivasanker
    • 1
  1. 1.National Centre for Catalysis ResearchI.I.T. - MadrasChennaiIndia
  2. 2.School of ChemistryBharathidasan UniversityTiruchirapalliIndia

Personalised recommendations