Skip to main content
Log in

The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2 + Oxygenates

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Transition metal modified Rh-catalysts can be used for converting syngas (CO + H2) into C2 + oxygenates. It has been found that Mn has a favorable effect in the selectivity towards oxygenates, while addition of Ir to the binary Rh–Mn catalysts significantly increases the space–time-yield (STY) of C2 + oxygenates, mainly by formyl formation at the early stages of conversion. Quantum mechanical calculations used to investigate the distribution of promoter sites in Rh-rich nanoparticles show that moderately high Mn/Ir ratios result in particles with all 3 metals on the surface, and that Ir atoms act as co-adsorption sinks of CO and H leading to HCO in the initial stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4
Fig. 3

Similar content being viewed by others

References

  1. Ahmed A (2007) Biotechnol Bioeng 97:1080

    Article  CAS  Google Scholar 

  2. Spivey JJ, Egbebi A (2007) Chem Soc Rev 36

  3. Burch R, Petch MI (1992) Appl Catal A Gen 88(1):61

    Article  CAS  Google Scholar 

  4. Burch R, Petch MI (1992) Appl Catal A Gen 88(1):77

    Article  CAS  Google Scholar 

  5. Ichikawa M (1978) Bull Chem Soc Jpn 51(8):2273

    Article  CAS  Google Scholar 

  6. Ichikawa M (1978) J Chem Soc Chem Commun 13:566

    Article  Google Scholar 

  7. Underwood RP, Bell AT (1986) Appl Catal 21(1):157

    Article  CAS  Google Scholar 

  8. Underwood RP, Bell AT (1987) Appl Catal 34(1–2):289

    CAS  Google Scholar 

  9. Gerber MA, Gray MJ, Stevens DJ, White JF, Rummel BL (2010) Optimization of rhodium-based catalysts for mixed alcohol synthesis 2009 progress report. PNNL, Richland, WA

  10. Gerber MA, White JF, Gray MJ, Stevens DJ (2010) Evaluation of promoters for rhodium-based catalysts for mixed alcohol synthesis 2008 progress report. PNNL, Richland, WA

  11. Gerber MA, White JF, Stevens DJ (2010) Mixed alcohol synthesis catalyst screening 2007 progress report. PNNL, Richland, WA

  12. Subramani V, Gangwal SK (2008) Energy Fuels 22(2):814

    Article  CAS  Google Scholar 

  13. Yoneda Y (1989) Progress in C1 Science in Japan. Amsterdam

  14. Mei D, Rousseau R, Kathmann SM, Glezakou V-A, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) J Catal 271(2):325

    Article  CAS  Google Scholar 

  15. Eckle S, Anfang HG, Behm RJ (2011) J Phys Chem C 115(4):1361

    Article  CAS  Google Scholar 

  16. Eckle S, Anfang HG, Behm RJ (2011) Appl Catal A Gen 391(1–2):325

    Article  CAS  Google Scholar 

  17. Zhao YH, Sun KJ, Ma XF, Liu JX, Sun DP, Su HY, Li WX (2011) Angewandte Chemie-International Edition 50(23):5335

    Article  CAS  Google Scholar 

  18. Choi Y, Liu P (2009) J Am Chem Soc 131(36):13054

    Article  CAS  Google Scholar 

  19. Huo CF, Ren J, Li YW, Wang JG, Jiao HJ (2007) J Catal 249(2):174

    Article  CAS  Google Scholar 

  20. Inderwildi OR, Jenkins SJ, King DA (2008) J Phys Chem C 112(5):1305

    Article  CAS  Google Scholar 

  21. Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272(2):287

    Article  CAS  Google Scholar 

  22. Storsaeter S, Chen D, Holmen A (2006) Surf Sci 600(10):2051

    Article  CAS  Google Scholar 

  23. CP2K, CP2K is a freely available program to perform atomistic and molecular simulations. http://cp2k.berlios.de

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  25. Zhang YK, Yang WT (1998) Phys Rev Lett 80(4):890

    Article  CAS  Google Scholar 

  26. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54(3):1703

    Article  CAS  Google Scholar 

  27. VandeVondele J, Hutter J (2007) J Chem Phys 127(11):114105

    Google Scholar 

  28. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113(22):9901

    Article  CAS  Google Scholar 

  29. Lindemann F (1910) Z Phys 11:609

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy Biomass Program. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national science user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki-Alexandra Glezakou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glezakou, VA., Jaffe, J.E., Rousseau, R. et al. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2 + Oxygenates. Top Catal 55, 595–600 (2012). https://doi.org/10.1007/s11244-012-9836-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9836-9

Keywords

Navigation