Topics in Catalysis

, Volume 55, Issue 5–6, pp 345–352 | Cite as

Platinum Nanoclusters Exhibit Enhanced Catalytic Activity for Methane Dehydrogenation

Original Paper

Abstract

Methane utilization, whether by steam reforming or selective oxidation to produce synthesis gas or alcohols, requires the activation and dissociation of at least one carbon–hydrogen bond. At high temperatures, using platinum nanoparticles as catalysts, this process operates with low activity. However, the catalyst particle shape may be controlled at low temperatures, and faceted particles may catalyze hydrocarbon transformation with increased activity. In this study, we use density functional theory calculations to calculate the thermodynamics of methane dehydrogenation on both (hemi)spherical and tetrahedral platinum nanoclusters. We show all steps of methane dehydrogenation on the hemispherical cluster have high activation barriers (0.4–1.0 eV), thus requiring high temperatures for this process. However, the energy barriers for methane dehydrogenation on the tetrahedral cluster are lower than the corresponding barriers on the hemispherical cluster, and in particular, the dissociation of the methyl group to form methylene and hydrogen has an activation barrier of only 0.2 eV. Thus, we expect that hydrogen production from methane would proceed at a higher rate and conversion on tetrahedral clusters than on hemispherical clusters. The resulting hydrogen and carbon-containing species may then serve as building blocks for the production of chemicals and fuels. We believe that catalyst shape is vitally important in controlling catalytic activity, and the use of faceted catalyst particles opens up possibilities for low-temperature and energy-efficient hydrocarbon transformations.

Keywords

Ab initio calculations Catalysis Nanotechnology Density-functional theory Reaction kinetics 

References

  1. 1.
    Aghalayam P, Park YK, Fernandes N, Papavassiliou V, Mhadeshwar AB, Vlachos DG (2003) A C1 mechanism for methane oxidation on platinum. J Catal 213(1):23–38. doi:10.1016/S0021-9517(02)00045-3 CrossRefGoogle Scholar
  2. 2.
    Akinaga Y, Taketsugu T, Hirao K (1997) Theoretical study of CH4 photodissociation on the Pt(111) surface. J Chem Phys 107(2):415–424. doi:10.1063/1.474403 CrossRefGoogle Scholar
  3. 3.
    Ashcroft AT, Cheetham AK, Foord JS, Green MLH, Grey CP, Murrell AJ, Vernon PDF (1990) Selective oxidation of methane to synthesis gas using transition metal catalysts. Nature 344(6264):319–321. doi:10.1038/344319a0 CrossRefGoogle Scholar
  4. 4.
    Bengaard H, Nørskov J, Sehested J, Clausen B, Nielsen L, Molenbroek A, Rostrup-Nielsen J (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209(2):365–384. doi:10.1006/jcat.2002.3579 Google Scholar
  5. 5.
    Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD (2007) State-resolved reactivity of CH4(23) on Pt(111) and Ni(111): effects of barrier height and transition state location. J Phys Chem A 111(49):12679–12683. doi:10.1021/jp076082w CrossRefGoogle Scholar
  6. 6.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  7. 7.
    Blöchl PE, Först CJ, Schimpl J (2003) Projector augmented wave method:ab initio molecular dynamics with full wave functions. Bull Mater Sci 26(1):33–41. doi:10.1007/BF02712785 CrossRefGoogle Scholar
  8. 8.
    Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41(1):1–42. doi:10.1081/CR-100101948 CrossRefGoogle Scholar
  9. 9.
    Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95. doi:10.1016/j.nantod.2008.09.002 CrossRefGoogle Scholar
  10. 10.
    Ciobîcǎ IM, Frechard F, van Santen RA, Kleyn AW, Hafner J (2000) A DFT study of transition states for CH activation on the Ru(0001) surface. J Phys Chem B 104(14):3364–3369. doi:10.1021/jp993314l Google Scholar
  11. 11.
    Freni S, Calogero G, Cavallaro S (2000) Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sour 87(1–2):28–38. doi:10.1016/S0378-7753(99)00357-2 CrossRefGoogle Scholar
  12. 12.
    Gallego GS, Mondragón F, Barrault J, Tatibouët JM, Batiot-Dupeyrat C (2006) CO2 reforming of CH4 over La-Ni based perovskite precursors. Appl Catal A Gen 311:164–171. doi:10.1016/j.apcata.2006.06.024 CrossRefGoogle Scholar
  13. 13.
    Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904. doi:10.1063/1.1329672 CrossRefGoogle Scholar
  14. 14.
    Hicks RF, Qi H, Young ML, Lee RG (1990) Structure sensitivity of methane oxidation over platinum and palladium. J Catal 122(2):280–294. doi:10.1016/0021-9517(90)90282-O CrossRefGoogle Scholar
  15. 15.
    Hoffmann R (1963) An extended Hückel theory. I. Hydrocarbons. J Chem Phys 39(6):1397–1412. doi:10.1063/1.1734456 CrossRefGoogle Scholar
  16. 16.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. doi:10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  17. 17.
    Jacob T, Goddard WA (2004) Chemisorption of (CHx and C2Hy) hydrocarbons on Pt(111) clusters and surfaces from dft studies. J Phys Chem B 109(1):297–311. doi:10.1021/jp0463868 CrossRefGoogle Scholar
  18. 18.
    Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations, World Scientific, Singapore, pp 385–404. doi:10.1142/9789812839664_0016 CrossRefGoogle Scholar
  19. 19.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. doi:10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  20. 20.
    Kokalj A, Bonini N, Sbraccia C, de Gironcoli S, Baroni S (2004) Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111). J Am Chem Soc 126(51):16732–16733. doi: doi:10.1021/ja045169h Google Scholar
  21. 21.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0 CrossRefGoogle Scholar
  22. 22.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  23. 23.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. doi:10.1103/PhysRevB.47.558 CrossRefGoogle Scholar
  24. 24.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. doi:10.1103/PhysRevB.49.14251 CrossRefGoogle Scholar
  25. 25.
    Kua J, Goddard WA (1998) Chemisorption of organics on platinum. 2. Chemisorption of C2Hx and CHx on Pt(111). J Phys Chem B 102(47):9492–9500. doi:10.1021/jp982527s CrossRefGoogle Scholar
  26. 26.
    Kumar V, Kawazoe Y (2008) Evolution of atomic and electronic structure of Pt clusters: planar, layered, pyramidal, cage, cubic, and octahedral growth. Phys Rev B 77:205418. doi:10.1103/PhysRevB.77.205418
  27. 27.
    Kunz S, Hartl K, Nesselberger M, Schweinberger FF, Kwon G, Hanzlik M, Mayrhofer KJJ, Heiz U, Arenz M (2010) Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Phys Chem Chem Phys 12(35):10288–10291. doi:10.1039/C0CP00288G CrossRefGoogle Scholar
  28. 28.
    Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Tuning selectivity in catalysis by controlling particle shape. Nat Mater 8(2):132–138. doi:10.1038/nmat2371 CrossRefGoogle Scholar
  29. 29.
    Lee K, Kim M, Kim H (2010) Catalytic nanoparticles being facet-controlled. J Mater Chem 20(19):3791–3798. doi:10.1039/B921857B CrossRefGoogle Scholar
  30. 30.
    Papoian G, Norskov JK, Hoffmann R (2000) A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface. J Am Chem Soc 122(17):4129–4144. doi:10.1021/ja993483j CrossRefGoogle Scholar
  31. 31.
    Pelletier L, Liu DDS (2007) Stable nickel catalysts with alumina-aluminum phosphate supports for partial oxidation and carbon dioxide reforming of methane. Appl Catal A Gen 317(2):293–298. doi:10.1016/j.apcata.2006.10.028 CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. doi:10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  33. 33.
    Petersen MA, Jenkins SJ, King DA (2004) Theory of methane dehydrogenation on Pt110(1 2). part I: chemisorption of CHx (x = 0 3). J Phys Chem B 108(19):5909–5919. doi:10.1021/jp037880z
  34. 34.
    Psofogiannakis G, St-Amant A, Ternan M (2006) Methane oxidation mechanism on Pt(111): a cluster model DFT study. J Phys Chem B 110(48):24593–24605. doi:10.1021/jp061559+ CrossRefGoogle Scholar
  35. 35.
    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326(5953):716–718. doi:10.1126/science.1174760 CrossRefGoogle Scholar
  36. 36.
    Trevor DJ, Cox DM, Kaldor A (1990) Methane activation on unsupported platinum clusters. J Am Chem Soc 112(10):3742–3749. doi:10.1021/ja00166a005 CrossRefGoogle Scholar
  37. 37.
    Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8(3):213–216. doi:10.1038/nmat2384 CrossRefGoogle Scholar
  38. 38.
    Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück HP, Libuda J, Neyman KM, Görling A (2010) Methane activation by platinum: critical role of edge and corner sites of metal nanoparticles. Chem A Eur J 16(22):6530–6539. doi:10.1002/chem.201000296 Google Scholar
  39. 39.
    Wang S, Lu GQ, Millar GJ (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy & Fuels 10(4):896–904. doi:10.1021/ef950227t CrossRefGoogle Scholar
  40. 40.
    Wang SG, Liao XY, Hu J, Cao DB, Li YW, Wang J, Jiao H (2007) Kinetic aspect of CO2 reforming of CH4 on Ni(1 1 1): a density functional theory calculation. Surf Sci 601(5):1271–1284. doi:10.1016/j.susc.2006.12.059 CrossRefGoogle Scholar
  41. 41.
    Watwe RM, Spiewak BE, Cortright RD, Dumesic JA (1998) Density functional theory (DFT) studies of C1 and C2 hydrocarbons species on Pt clusters. J Catal 180(2):184–193. doi:10.1006/jcat.1998.2288 CrossRefGoogle Scholar
  42. 42.
    Winans R, Vajda S, Ballentine G, Elam J, Lee B, Pellin M, Seifert S, Tikhonov G, Tomczyk N (2006) Reactivity of supported platinum nanoclusters studied by in situ GISAXS: clusters stability under hydrogen. Top Catal 39(3):145–149. doi:10.1007/s11244-006-0050-5 CrossRefGoogle Scholar
  43. 43.
    Xiao L, Wang L (2007) Methane activation on Pt and Pt4: a density functional theory study. J Phys Chem B 111(7):1657–1663. doi:10.1021/jp065288e CrossRefGoogle Scholar
  44. 44.
    Zaera F, Hoffmann H (1991) Detection of chemisorbed methyl and methylene groups: surface chemistry of methyl iodide on platinum(111). J Phys Chem 95(16):6297–6303. doi:10.1021/j100169a042 CrossRefGoogle Scholar
  45. 45.
    Zhang CJ, Hu P (2002) Methane transformation to carbon and hydrogen on Pd(100): pathways and energetics from density functional theory calculations. J Chem Phys 116(1):322–327. doi:10.1063/1.1423663 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Energy, Environmental and Chemical EngineeringWashington UniversitySaint LouisUSA

Personalised recommendations