Skip to main content
Log in

Decomposition of Furan on Pd(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Periodic density functional theory calculations (GGA-PBE) have been performed to investigate the mechanism for the decomposition of furan up to CO formation on the Pd(111) surface. At 1/9 ML coverage, furan adsorbs with its molecular plane parallel to the surface in several states with nearly identical adsorption energies of −1.0 eV. The decomposition of furan begins with the opening of the ring at the C–O position with an activation barrier of E a  = 0.82 eV, which yields a C4H4O aldehyde species that rapidly loses the α H to form C4H3O (E a  = 0.40 eV). C4H3O further dehydrogenates at the δ position to form C4H2O (E a  = 0.83 eV), before the α–β C–C bond dissociates (E a  = 1.08 eV) to form CO. Each step is the lowest-barrier dissociation step in the respective species. A simple kinetic analysis suggests that furan decomposition begins at 240–270 K and is mostly complete by 320 K, in close agreement with previous experiments. It is suggested that the C4H2O intermediate delays the decarbonylation step up to 350 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164

    Article  CAS  Google Scholar 

  2. Kliewer CJ, Aliaga C, Bieri M, Huang WY, Tsung CK, Wood JB, Komvopoulos K, Somorjai GA (2010) J Am Chem Soc 132:13088

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  4. Huber GW, Dumesic JA (2006) Catal Today 111:119

    Article  CAS  Google Scholar 

  5. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982

    Article  CAS  Google Scholar 

  6. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933

    Article  CAS  Google Scholar 

  7. Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397

    Article  CAS  Google Scholar 

  8. Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC (2009) App Catal A Gen 361:117

    Article  Google Scholar 

  9. Furimsky E (2000) App Catal A Gen 199:147

    Article  CAS  Google Scholar 

  10. Jackson SD, Canning AS, Vass EM, Watson SR (2003) Ind Eng Chem Res 42:5489

    Article  CAS  Google Scholar 

  11. Sitthisa S, Resasco DE (2011) Catal Lett 141:784

    Article  CAS  Google Scholar 

  12. Loui A, Chiang S (2004) Appl Surf Sci 237:555

    Article  Google Scholar 

  13. Knight MJ, Allegretti F, Kröger EA, Polcik M, Lamont CLA, Woodruff DP (2008) Surf Sci 602:2524

    Article  CAS  Google Scholar 

  14. Bradley MK, Robinson J, Woodruff DP (2010) Surf Sci 604:920

    Article  CAS  Google Scholar 

  15. Ormerod RM, Baddeley CJ, Hardacre C, Lambert RM (1996) Surf Sci 360:1

    Article  CAS  Google Scholar 

  16. Caldwell TE, Abdelrehim IM, Land DP (1996) J Am Chem Soc 118:907

    Article  CAS  Google Scholar 

  17. Knight MJ, Allegretti F, Kröger EA, Polcik M, Lamont CLA, Woodruff DP (2008) Surf Sci 602:2743

    Article  CAS  Google Scholar 

  18. Bradley MK, Duncan DA, Robinson J, Woodruff DP (2011) Phys Chem Chem Phys 13:7975

    Article  CAS  Google Scholar 

  19. Caldwell TE, Land DP (1999) J Phys Chem B 103:7869

    Article  CAS  Google Scholar 

  20. Qiao MH, Yan FQ, Sim WS, Deng JF, Xu GQ (2000) Surf Sci 460:67

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  22. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  23. Perdew JJ, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  24. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  25. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  26. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Orlando

    Google Scholar 

  27. Henkelman G, Jónsson H (1999) J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  28. Masel RI (1996) Principles of adsorption and reaction on solid surfaces. Wiley, New York

    Google Scholar 

  29. Moses PG, Mortensen JJ, Lundqvist BI, Nørskov JK (2009) J Chem Phys 130:104709

    Article  Google Scholar 

  30. Gajdos M, Eichler A, Hafner J (2004) J Phys Condens Matter 16:1141

    Article  CAS  Google Scholar 

  31. Lim KH, Chen ZX, Neyman KM, Rosch N (2006) J Phys Chem B 110:14890

    Article  CAS  Google Scholar 

  32. Xu L, Xu Y (2011) Catal Today 165:96

    Article  CAS  Google Scholar 

  33. Morin C, Simon D, Sautet P (2006) Surf Sci 600:1339

    Article  CAS  Google Scholar 

  34. Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435

    Article  Google Scholar 

  35. Medlin J, Horiuchi C, Rangan M (2010) Top Catal 53:1179

    Article  CAS  Google Scholar 

  36. Bradshaw AM, Hoffmann FM (1978) Surf Sci 72:513

    Article  CAS  Google Scholar 

  37. Surnev S, Sock M, Ramsey MG, Netzer FP, Wiklund M, Borg M, Andersen JN (2000) Surf Sci 470:171

    Article  CAS  Google Scholar 

  38. Hall RB (1987) J Phys Chem 91:1007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy (DOE), and used resources of the National Energy Research Scientific Computing Center, which is supported by DOE Office of Science under Contract DE-AC02-05CH11231, and resources of the Oak Ridge Leadership Computing Facility, which is supported by DOE Office of Science under Contract DE-AC05-00OR22725. I thank Dr. Aditya Ashi Savara for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Xu.

Appendix

Appendix

See Table 2.

Table 2 Zero point energy (ZPE, in eV) for the adsorbed species, and ZPE corrections (equal to the ZPE of IS minus the ZPE of TS) and prefactors (in s−1) for the dissociation steps, as mentioned in the figures in the main text

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y. Decomposition of Furan on Pd(111). Top Catal 55, 290–299 (2012). https://doi.org/10.1007/s11244-012-9797-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9797-z

Keywords

Navigation