Topics in Catalysis

, Volume 55, Issue 5–6, pp 300–312 | Cite as

Aqueous N2O Reduction with H2 Over Pd-Based Catalyst: Mechanistic Insights From Experiment and Simulation

  • Dorrell C. McCalman
  • Kathleen H. Kelley
  • Charles J. Werth
  • John R. Shapley
  • William F. Schneider
Original Paper


Nitrous Oxide (N2O), an ozone depleting greenhouse gas, is an observed intermediate in aqueous nitrate/nitrite reduction mediated by both natural microbial and synthetic laboratory catalysts. Because of our interest in catalytic nitrate/nitrite remediation, we have endeavored to develop a detailed concordant experimental/theoretical picture of N2O reduction with H2 over a Pd catalyst in an aqueous environment. We use batch experiments in H2 excess and limiting conditions to examine the reduction kinetics. We use density functional theory (DFT) to model the elementary steps in N2O reduction on model Pd(100), Pd(110), Pd(111) and Pd(211) facets and including the influence of adsorbed O, H, and of H2O. Both experiments and theory agree that hydrogen is necessary for removal of adsorbed oxygen from the catalyst surface. The dissociation of N2O to N2(g) and O(ads) is facile and in the absence of H proceeds until the catalyst is O-covered. Water itself is proposed to facilitate the hydrogenation of surface O by transferring absorbed hydrogen to Pd-absorbed O and OH. We measure an apparent activation energy of 41.4 kJ/mol (0.43 eV) for N2O reduction in the presence of excess H2, a value that is within 0.1 eV of the barriers determined theoretically.


Nitrous oxide reduction Hydrogen Palladium Aqueous Density functional theory 



This work was supported by the National Science Foundation with Division of Chemistry Grant CHE 07-18078 and with WaterCAMPWS STC Agreement Number CTS-0120978. The Notre Dame Center for Research Computing is acknowledged for computational facilities.


  1. 1.
    United Nations Environmental Program: Ozone Secretariat. In The Montreal Protocol on Substances that Deplete the Ozone Layer: as either adjusted and/or amended in London 1990, Copenhagen 1992, Vienna 1995, Montreal 1997, Beijing 1999; 2000Google Scholar
  2. 2.
    Ravishankara AR, Daniel JS, Portmann RW (2009) Science 326:123–125CrossRefGoogle Scholar
  3. 3.
    United States Environmental Protection Agency. ‘2010 US Greenhouse Gas Inventory Report: Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990–2008′. 2010, U.S. EPA # 430-R-10-006Google Scholar
  4. 4.
    Leuenberger M, Siegenthaler U (1992) Nature 360:451CrossRefGoogle Scholar
  5. 5.
    MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Geophys Res Lett 33:L14810CrossRefGoogle Scholar
  6. 6.
    Tolman W (2010) Angew Chem Int Ed 49:1018–1024CrossRefGoogle Scholar
  7. 7.
    Trogler WC (1999) Coord Chem Rev 187:303–327CrossRefGoogle Scholar
  8. 8.
    Russo N, Fino D, Saracco G, Specchia V (2007) Catal Today 119:228–232CrossRefGoogle Scholar
  9. 9.
    Zeigarnik A (2003) Kinet Catal 44:233–246CrossRefGoogle Scholar
  10. 10.
    Matsushima T (2007) Prog Surf Sci 82:435–477CrossRefGoogle Scholar
  11. 11.
    Kondratenko E, Ovsitser O (2008) Angew Chem Int Ed 47:3227–3229CrossRefGoogle Scholar
  12. 12.
    Jiang H, Wang H, Liang F, Werth S, Schiestel T, Caro J (2009) Angew Chem Int Ed 48:2983–2986CrossRefGoogle Scholar
  13. 13.
    Hörold S, Vorlop KD, Tacke T, Sell M (1993) Catal Today 17:21–30CrossRefGoogle Scholar
  14. 14.
    Prüsse U, Hähnlein M, Daum J, Vorlop K (2000) Catal Today 55:79–90CrossRefGoogle Scholar
  15. 15.
    Yoshinaga Y, Akita T, Mikami I, Okuhara T (2002) J Catal 207:37–45CrossRefGoogle Scholar
  16. 16.
    Králik M, Biffis A (2001) J Mol Catal A Chem 177:113–138CrossRefGoogle Scholar
  17. 17.
    Sá J, Gross S, Vinek H (2005) Appl Catal A 294:226–234CrossRefGoogle Scholar
  18. 18.
    Gao W, Guan N, Chen J, Guan X, Jin R, Zeng H, Liu Z, Zhang F (2003) Appl Catal B Environ 46:341–351CrossRefGoogle Scholar
  19. 19.
    D’Arino M, Pinna F, Strukul G (2004) Appl Catal B 53:161–168CrossRefGoogle Scholar
  20. 20.
    Guy KA, Xu H, Yang JC, Werth CJ, Shapley JR (2009) J Phy Chem C 113:8177–8185CrossRefGoogle Scholar
  21. 21.
    Prusse U, Vorlop KD (2001) J Mol Catal A Chem 173:313–328CrossRefGoogle Scholar
  22. 22.
    Pintar A, Batista J, Musevic I (2004) Appl Catal B 52:49–60CrossRefGoogle Scholar
  23. 23.
    Chaplin B, Reinhard M, Schneider W, Schueth C, Shapley J, Strathmann T, Werth C (2012) Environ Sci Technol 46:3655–3670Google Scholar
  24. 24.
    Bradley JS, Hill EW, Klein C, Chaudret B, Duteil A (1993) Chem Mater 5:254–256CrossRefGoogle Scholar
  25. 25.
    Toshima N, Wang Y (1994) Langmuir 10:4574–4580CrossRefGoogle Scholar
  26. 26.
    Yamauchi M, Kobayashi H, Kitagawa H (2009) ChemPhysChem 10:2566–2576CrossRefGoogle Scholar
  27. 27.
    Ranea VA, Strathmann TJ, Shapley JR, Schneider WF (2011) ChemCatChem 3(5):898–903CrossRefGoogle Scholar
  28. 28.
    Kokalj A, Kobal I, Horino H, Ohno Y, Matshushima T (2002) Surf Sci 506:196CrossRefGoogle Scholar
  29. 29.
    Burch R, Daniells ST, Breen JP, Hu P (2004) J Catal 224(2):252–260CrossRefGoogle Scholar
  30. 30.
    Ricart JM, Ample F, Clotet A, Curulla D, Niemantsverdriet JW, Paul JF, Perez-Ramirez J (2005) J Catal 232(1):179–185CrossRefGoogle Scholar
  31. 31.
    Kang Dae-Bok (2007) Bull Korean Chem Soc 28(12):2369Google Scholar
  32. 32.
    Guy KA, Shapley JR (2009) Organometallics 28:4020–4027CrossRefGoogle Scholar
  33. 33.
    Zhang R (2011) Elucidation of nitrate reduction mechanisms on a pd/in bimetallic catalyst using isotope labeled nitrogen species. PhD Thesis, University of Illinois at Urbana, ChampaignGoogle Scholar
  34. 34.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46(11):6671Google Scholar
  35. 35.
    Blochl (1994) Phys Rev B 50(24):17953Google Scholar
  36. 36.
    Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169Google Scholar
  37. 37.
    Kresse G, Joubert D (1999) Phys Rev B 59(3):1758Google Scholar
  38. 38.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113(22):9901CrossRefGoogle Scholar
  39. 39.
    Henkelman G, Jonsson H (1999) J Chem Phys 111(15):7010CrossRefGoogle Scholar
  40. 40.
    Boudart M, Djega-Mariadassou G (1984) In Kinetics of heterogeneous catalytic reactions. Princeton University Press, New Jersey, pp 213Google Scholar
  41. 41.
    Prelazzi G, Cerboni M, Leofanti G (1999) J Catal 181:73–79CrossRefGoogle Scholar
  42. 42.
    Phatak A, Delgass W, Ribeiro F, Schneider W (2009) J Phys Chem C 113:7269–7276CrossRefGoogle Scholar
  43. 43.
    Huang SC, Lin CH, Wang JH (2010) J Phys Chem C 114(21):9826–9834CrossRefGoogle Scholar
  44. 44.
    Sass JK, Kretzschmar K, Holloway S (1981) Vacuum 31:483CrossRefGoogle Scholar
  45. 45.
    Doering DL, Madey TE (1982) Surf Sci 123:305CrossRefGoogle Scholar
  46. 46.
    Roudgar A, Gross A (2005) Chem Phys Lett 409:157–162CrossRefGoogle Scholar
  47. 47.
    Schnur S, Gross A (2009) New J Phys 11:125003CrossRefGoogle Scholar
  48. 48.
    Dong W, Kresse G, Hafner J (1997) J Mol Catal A Chem 119(1–3):69–76CrossRefGoogle Scholar
  49. 49.
    Wang GC, Tao SX, Bu XH (2006) J Catal 244(1):10–16CrossRefGoogle Scholar
  50. 50.
    Hammer B (2001) J Catal 199:171–176CrossRefGoogle Scholar
  51. 51.
    Getman RB, Schneider WF, Smeltz AD, Delgass WN, Ribeiro FH (2009) Phys Rev Lett 102(7):076101CrossRefGoogle Scholar
  52. 52.
    Komatsuzaki T, Ohmine I (1994) Chem Phys 180:239CrossRefGoogle Scholar
  53. 53.
    Cui Q, Karplus M (2003) J Phys Chem 107(4):1071–1078CrossRefGoogle Scholar
  54. 54.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–77CrossRefGoogle Scholar
  55. 55.
    Ojeda M, Zhan B, Iglesia E (2012) J Catal 285(1):92–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dorrell C. McCalman
    • 1
    • 3
  • Kathleen H. Kelley
    • 2
  • Charles J. Werth
    • 4
  • John R. Shapley
    • 2
  • William F. Schneider
    • 1
    • 3
  1. 1.Department of Chemical and Biomolecular Engineering and Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Department of Chemistry and Center of Advanced Materials for the Purification of Water with SystemsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Center of Advanced Materials for the Purification of Water with SystemsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Civil and Environmental Engineering, and Center of Advanced Materials for the Purification of Water with SystemsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations