Skip to main content

Stability of Pt/γ-Al2O3 Catalysts in Model Biomass Solutions

Abstract

The stability of a Pt/γ-Al2O3 catalyst in liquid water and aqueous solutions of 5 wt% glycerol or sorbitol at 225 °C is examined using a variety of physicochemical methods. It is demonstrated that the presence of glycerol and sorbitol significantly reduces the hydration of γ-Al2O3 to form boehmite as compared to treatment in pure water. The stability against hydration increases with increasing carbon chain length. Treatment with polyol solutions also results in reduced agglomeration of supported metal particles. The prevention of boehmite formation and agglomeration of metal particles are attributed to the formation of carbonaceous species on the surface. In addition to these effects, the deposits block a considerable portion of active metal surface area. IR spectroscopic analysis indicates that dehydration reactions play an important role in the formation of the carbonaceous deposits. The present results illustrate that water and dissolved biomass compounds can strongly affect the stability of heterogeneous catalysts under reaction conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Huber GW, NSF (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. National Science Foundation

  2. 2.

    Yan W, Suppes GJ (2008) J Chem Eng Data 53:2033

    Article  CAS  Google Scholar 

  3. 3.

    Huber GW, Shabaker JW, Dumesic JA (2003) Science 300:2075

    Article  CAS  Google Scholar 

  4. 4.

    Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Appl Catal B Environ 62:226

    Article  CAS  Google Scholar 

  5. 5.

    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B Environ 43:13

    Article  CAS  Google Scholar 

  6. 6.

    Wen G, Xu Y, Ma H, Xu Z, Tian Z (2008) Int J Hydrogen Energy 33:6657

    Article  CAS  Google Scholar 

  7. 7.

    Kirilin AV, Tokarev AV, Murzina EV, Kustov LM, Mikkola JP, Murzin DY (2010) ChemSusChem 3:708

    Article  CAS  Google Scholar 

  8. 8.

    Davda RR, Dumesic JA (2004) Chem Commun 36

  9. 9.

    Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933

    Article  CAS  Google Scholar 

  10. 10.

    Nikolla E, Román-Leshkov Y, Moliner M, Davis ME (2011) ACS Catal 1:408

    Article  CAS  Google Scholar 

  11. 11.

    Crisci AJ, Tucker MH, Lee M-Y, Jang SG, Dumesic JA, Scott SL (2011) ACS Catal 1:719

    Article  CAS  Google Scholar 

  12. 12.

    Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Appl Catal B Environ 66:111

    Article  CAS  Google Scholar 

  13. 13.

    Chheda JN, Dumesic JA (2007) Catal Today 123:59

    Article  CAS  Google Scholar 

  14. 14.

    Chia M, Pagán-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) J Am Chem Soc 133:12675

    Article  CAS  Google Scholar 

  15. 15.

    Ravenelle RM, Schüßler F, D’Amico A, Danilina N, van Bokhoven JA, Lercher JA, Jones CW, Sievers C (2010) J Phys Chem C 114:19582

    Article  CAS  Google Scholar 

  16. 16.

    Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) ACS Catal 1:552

    Article  CAS  Google Scholar 

  17. 17.

    Ketchie WC, Maris EP, Davis RJ (2007) Chem Mater 19:3406

    Article  CAS  Google Scholar 

  18. 18.

    Ravenelle RM, Diallo FZ, Crittenden JC, Sievers C (2011) ChemCatChem 4:492

  19. 19.

    Pagan-Torres YJ, Gallo JMR, Wang D, Pham HN, Libera JA, Marshall CL, Elam JW, Datye AK, Dumesic JA (2011) ACS Catal 1:1234

    Article  CAS  Google Scholar 

  20. 20.

    Pham HN, Pagan-Torres YJ, Serrano-Ruiz JC, Wang D, Dumesic JA, Datye AK (2011) Appl Catal A Gen 397:153

    Article  CAS  Google Scholar 

  21. 21.

    Holleman AF, Wiberg E (2001) Inorganic chemistry, 34th edn. Academic Press, San Diego

    Google Scholar 

  22. 22.

    MacDonald DD, Butler P (1973) Corros Sci 13:259

    Article  CAS  Google Scholar 

  23. 23.

    Luo N, Fu X, Cao F, Xiao T, Edwards PP (2008) Fuel 87:3483

    Article  CAS  Google Scholar 

  24. 24.

    Loh J, Brodie G, Naim F (2010). In: 115th Annual meeting on light metals, New Orleans, p 215

  25. 25.

    Helen W (2000) Hydrometallurgy 55:289

    Article  Google Scholar 

  26. 26.

    Paulaime A-M, Seyssiecq I, Veesler S (2003) Powder Technol 130:345

    Article  CAS  Google Scholar 

  27. 27.

    van Bronswijk W, Watling HR, Yu Z (1999) Colloid Surf A 157:85

    Article  Google Scholar 

  28. 28.

    Luo N-J, Wang J-A, Xiao T-C, Cao F-H, Fang D-Y (2011) Catal Today 166:123

    Article  CAS  Google Scholar 

  29. 29.

    Iriondo A, Cambra JF, Barrio VL, Guemez MB, Arias PL, Sanchez-Sanchez MC, Navarro RM, Fierro JLG (2011) Appl Catal B Environ 106:83

    CAS  Google Scholar 

  30. 30.

    Kim M-Y, Park J-H, Shin C-H, Han S-W, Seo G (2009) Catal Lett 133:288

    Article  CAS  Google Scholar 

  31. 31.

    Benson JE, Boudart M (1965) J Catal 4:704

    Article  CAS  Google Scholar 

  32. 32.

    Delannay F (ed) (1984) Characterization of heterogeneous catalysts. Marcel Dekker, New York

    Google Scholar 

  33. 33.

    Wefers K, Misra C (1987) Alcoa Technical Paper, 19. Revised, Aluminum Company of America, Alcoa, pp 54–58

  34. 34.

    Linsen BG, Fortuin JMH, Okkerse C, Steggerda JJ (eds) (1970) Pysical and chemical aspects of adsorbents and catalysts. Academic Press, New York

    Google Scholar 

  35. 35.

    Pecharroman C, Sobrados I, Iglesias JE, Gonzalez-Carreno T, Sanz J (1999) J Phys Chem B 103:6160

    Article  CAS  Google Scholar 

  36. 36.

    Urretavizcaya G, Cavalieri AL, López JMP, Sobrados I, Sanz J (1998) J Mater Synth Process 6:1

    Article  CAS  Google Scholar 

  37. 37.

    Knözinger H, Ratnasamy P (1978) Catal Rev 17:31

    Article  Google Scholar 

  38. 38.

    Li H, Xu Y, Gao C, Zhao Y (2010) Catal Today 158:475

    Article  CAS  Google Scholar 

  39. 39.

    Eisenbach D, Gallei E (1979) J Catal 56:377

    Article  CAS  Google Scholar 

  40. 40.

    Cerqueira HS, Sievers C, Joly G, Magnoux P, Lercher JA (2005) Ind Eng Chem Res 44:2069

    Article  CAS  Google Scholar 

  41. 41.

    Kataoka Y, Kitadai N, Hisatomi O, Nakashima S (2011) Appl Spectrosc 65:436

    Article  CAS  Google Scholar 

  42. 42.

    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, San Diego

    Google Scholar 

  43. 43.

    NIST Chemistry WebBook (2009). http://webbook.nist.gov/chemistry/. Accessed Nov 7, 2009

  44. 44.

    Liu X, Truitt RE (1997) J Am Chem Soc 119:9856

    Article  CAS  Google Scholar 

  45. 45.

    Williams MF, Fonfe B, Sievers C, Abraham A, van Bokhoven JA, Jentys A, van Veen JAR, Lercher JA (2007) J Catal 251:485

    Article  CAS  Google Scholar 

  46. 46.

    Morterra C, Magnacca G (1996) Catal Today 27:497

    Article  CAS  Google Scholar 

  47. 47.

    Zhou Y, Fu H, Zheng X, Li R, Chen H, Li X (2009) Catal Commun 11:137

    Article  CAS  Google Scholar 

  48. 48.

    Massa P, Ivorra F, Haure P, Fenoglio R (2009) Catal Commun 10:1706

    Article  CAS  Google Scholar 

  49. 49.

    Ravenelle RM, Diallo FZ, Copeland JR, Lupini A, Su R, Crittenden JC, Sievers C (In preparation)

  50. 50.

    Gyurcsik B, Nagy L (2000) Coord Chem Rev 203:81

    Article  CAS  Google Scholar 

  51. 51.

    Hartinger CG, Nazarov AA, Ashraf SM, Dyson PJ, Keppler BK (2008) Curr Med Chem 15:2574

    Article  CAS  Google Scholar 

  52. 52.

    Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Chem Mater 12:1622

    Article  Google Scholar 

  53. 53.

    Safavi A, Momeni S, Saghir N (2009) J Hazard Mater 162:333

    Article  CAS  Google Scholar 

  54. 54.

    Guisnet M, Magnoux P (1989) Appl Catal 54:1

    Article  CAS  Google Scholar 

  55. 55.

    Wang W, Buchholz A, Seiler M, Hunger M (2003) J Am Chem Soc 125:15260

    Article  CAS  Google Scholar 

  56. 56.

    Hill IM, Al Hashimi S, Bhan A (2011) J Catal 285:115

    Article  Google Scholar 

  57. 57.

    Bartholomew CH (2001) Appl Catal A Gen 212:17

    Article  CAS  Google Scholar 

  58. 58.

    Augustine SM, Alameddin GN, Sachtler WMH (1989) J Catal 115:217

    Article  CAS  Google Scholar 

  59. 59.

    Weingarten R, Tompsett GA, Conner WC Jr, Huber GW (2011) J Catal 279:174

    Article  CAS  Google Scholar 

  60. 60.

    Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin D, Agrawal PK, Jones CW (2009) Ind Eng Chem Res 48:1277

    Article  CAS  Google Scholar 

  61. 61.

    Zhang H, Cheng Y-T, Vispute TP, Xiao R, Huber GW (2011) Energy Environ Sci 4:2297

    Article  CAS  Google Scholar 

  62. 62.

    Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed 43:1549

    Article  CAS  Google Scholar 

  63. 63.

    Teixeira ACSC, Giudici R (1999) Chem Eng Sci 54:3609

    Article  CAS  Google Scholar 

  64. 64.

    Bett JAS, Kinoshita K, Stonehart P (1976) J Catal 41:124

    Article  CAS  Google Scholar 

  65. 65.

    Douidah A, Marécot P, Barbier J (2002) Appl Catal A Gen 225:11

    Article  CAS  Google Scholar 

  66. 66.

    Connolly JF, Flannery RJ, Meyers BL (1967) J Electrochem Soc 114:241

    Article  CAS  Google Scholar 

  67. 67.

    Maris EP, Ketchie WC, Oleshko V, Davis RJ (2006) J Phys Chem B 110:7869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sarah McNew, Jessica Ewbank, Jared McGrath, Abiola Shitta and Johannes Leisen for experimental support. The authors would also like to recognize financial support provided by the Brook Byers Institute for Sustainable Systems, the Hightower Chair and the Georgia Research Alliance. Access to analytical instruments provided by Sankar Nair and Christopher W. Jones is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Sievers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ravenelle, R.M., Copeland, J.R., Van Pelt, A.H. et al. Stability of Pt/γ-Al2O3 Catalysts in Model Biomass Solutions. Top Catal 55, 162–174 (2012). https://doi.org/10.1007/s11244-012-9785-3

Download citation

Keywords

  • Hydrothermal stability
  • Coking
  • Carbonaceous deposits
  • Boehmite
  • Aqueous phase reforming