Skip to main content
Log in

Influence of Reaction Conditions on Diacid Formation During Au-Catalyzed Oxidation of Glycerol and Hydroxymethylfurfural

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The selective oxidation of glycerol and 5-hydroxymethylfurfural (HMF) to diacids over supported gold catalysts (Au/C and Au/TiO2) in liquid water at mild temperatures was a strong function of the added base such as NaOH. Use of hydrotalcite as a solid base in place of NaOH in the HMF reaction medium facilitated the production of diacid over Au/TiO2, but extensive leaching of magnesium suggested that hydrotalcite was consumed stoichiometrically in the reaction. Production of diacids from glycerol oxidation over supported Au catalysts was promoted by operating in a continuous flow reactor and by increasing the catalyst loading in a semi-batch reactor. Trace inhibitors formed by conversion of the product monoacid are proposed to account for the generally low selectivity to diacids over gold catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ragauskas A, Williams C, Davison B, Britovsek G, Cairney J, Eckert C, Frederick W, Hallett J, Leak D, Liotta C, Mielenz J, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484

    Article  CAS  Google Scholar 

  2. Bozell JJ (2008) CLEAN Soil Air Water 36:633

    Article  CAS  Google Scholar 

  3. Bozell JJ, Petersen GR (2010) Green Chem 12:539

    Article  CAS  Google Scholar 

  4. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  5. Clark IT (1958) J Ind Eng Chem 50:1125

    Article  CAS  Google Scholar 

  6. Pagliaro M, Rossi M (2008) The future of glycerol. Royal Society of Chemistry, Cambridge

    Google Scholar 

  7. Stelmachowski M (2011) Ecol Chem Eng S 18:9

    CAS  Google Scholar 

  8. Katryniok B, Kimura H, Skrzynska E, Giradon J-S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem. doi:10.1039/c1gc15320j

  9. Centi G, van Santen RA (2007) Catalysis for renewables. Wiley, Weinheim

    Book  Google Scholar 

  10. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume i: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy Report, Oak Ridge

    Google Scholar 

  11. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933

    Article  CAS  Google Scholar 

  12. Gandini A, Silvestre AJD, Pascoal Neto C, Sousa AF, Gomes M (2008) J Polym Sci Part A 47:295

    Article  Google Scholar 

  13. Arcadi A (2008) Chem Rev 108:3266

    Article  CAS  Google Scholar 

  14. Sheldon RA, Arends IWCE, Dijksman A (2000) Catal Today 57:157

    Article  CAS  Google Scholar 

  15. Sheldon RA, Dakka J (1994) Catal Today 19:215

    Article  CAS  Google Scholar 

  16. Besson M, Gallezot P (2000) Catal Today 57:127

    Article  CAS  Google Scholar 

  17. Gangwal VR, van der Schaaf J, Kuster BFM, Schouten JC (2005) J Catal 232:432

    Article  CAS  Google Scholar 

  18. Mallat T, Baiker A (2004) Chem Rev 104:3037

    Article  CAS  Google Scholar 

  19. Stephen GJHA, Hashmi K (2006) Angew Chem Int Ed 45:7896

    Article  CAS  Google Scholar 

  20. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Comm 7:696–697

    Google Scholar 

  21. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131

    Article  CAS  Google Scholar 

  22. Prati L, Rossi M (1998) J Catal 176:552

    Article  CAS  Google Scholar 

  23. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329

    Article  CAS  Google Scholar 

  24. Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74

    Article  CAS  Google Scholar 

  25. Ketchie WC, Murayama M, Davis RJ (2007) Top Catal 44:307

    Article  CAS  Google Scholar 

  26. Zhu JJ, Figueiredo JL, Faria JL (2008) Catal Comm 9:2395

    Article  CAS  Google Scholar 

  27. Dimitratos N, Villa A, Bianchi CL, Prati L, Makkee M (2006) Appl Catal A 311:185

    Article  CAS  Google Scholar 

  28. Ketchie WC, Fang Y-L, Wong MS, Murayama M, Davis RJ (2007) J Catal 250:94

    Article  CAS  Google Scholar 

  29. Villa A, Veith GM, Prati L (2010) Angew Chem Int Ed 49:4499

    Article  CAS  Google Scholar 

  30. Gupta NK, Nishimura S, Takagaki A, Ebitani K (2011) Green Chem 13:824

    Article  CAS  Google Scholar 

  31. Villa A, Gaiassi A, Rossetti I, Bianchi CL, van Benthem K, Veith GM, Prati L (2010) J Catal 275:108

    Article  CAS  Google Scholar 

  32. Takagaki A, Tsuji A, Nishimura S, Ebitani K (2011) Chem Lett 40:150

    Article  CAS  Google Scholar 

  33. Demirel S, Lehnert K, Lucas M, Claus P (2007) Appl Catal B 70:637

    Article  CAS  Google Scholar 

  34. Porta F, Prati L (2004) J Catal 224:397

    Article  CAS  Google Scholar 

  35. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Catal Today 160:55

    Article  CAS  Google Scholar 

  36. Casanova O, Iborra S, Corma A (2009) ChemSusChem 2:1138

    Article  CAS  Google Scholar 

  37. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) ChemSusChem 1:75

    Article  CAS  Google Scholar 

  38. Zope BN, Davis RJ (2009) Top Catal 52:269

    Article  CAS  Google Scholar 

  39. Pollington SD, Enache DI, Landon P, Meenakshisundaram S, Dimitratos N, Wagland A, Hutchings GJ, Stitt EH (2009) Catal Today 145:169

    Article  CAS  Google Scholar 

  40. Villa A, Chan-Thaw CE, Prati L (2010) Appl Catal B 96:541

    Article  CAS  Google Scholar 

  41. Holliday R Data sheets accompanying gold reference catalysts

  42. Xi Y, Davis RJ (2010) Clays Clay Miner 58:475

    Article  CAS  Google Scholar 

  43. Tsuji A, Rao KTV, Nishimura S, Takagaki A, Ebitani K (2011) ChemSusChem 4:542

    Article  CAS  Google Scholar 

  44. Jobbágy M, Regazzoni AE (2011) Appl Clay Sci 51:366

    Article  Google Scholar 

  45. Demirel-Gulen S, Lucas M, Claus P (2005) Catal Today 102–103:166

    Article  Google Scholar 

  46. Wörz N, Brandner A, Claus P (2009) J Phys Chem C 114:1164

    Article  Google Scholar 

  47. Zope BN, Davis RJ (2011) Green Chem 13:3484–3491. doi:10.1039/C1GC15953D

Download references

Acknowledgment

This material is based upon work supported by the United States Department of Energy under Grant No. DE-FG02-95ER14549 and the National Science Foundation under Grant Nos. OISE 0730277 and EEC-0813570. RJD acknowledges informative and inspiring discussions with Professor Harold Kung (Northwestern University) about gold catalysis over the past decade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zope, B.N., Davis, S.E. & Davis, R.J. Influence of Reaction Conditions on Diacid Formation During Au-Catalyzed Oxidation of Glycerol and Hydroxymethylfurfural. Top Catal 55, 24–32 (2012). https://doi.org/10.1007/s11244-012-9777-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9777-3

Keywords

Navigation