Skip to main content
Log in

Chemisorption and Dehydration of Ethanol on Silica: Effect of Temperature on Selectivity

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Dissociative chemisorption of ethanol on partially dehydroxylated silica is investigated by (i) exposing silica to gas-phase ethanol at various temperatures (ranging between 373 and 773 K) and (ii) analyzing the material using temperature-programmed desorption and in situ infrared spectroscopy. This chemisorption leads to formation of isolated surface ethoxide species via dehydration of ethanol at reaction temperatures above 573 K, and, at lower temperatures, it favors the synthesis of silanol–ethoxide functionality via a pathway involving opening of siloxane Si–O–Si bridges. The activation barrier for ethene desorption from the isolated surface ethoxide species is considerably higher relative to that for ethanol desorption from the hydrogen-bound silanol–ethoxide pairs. These single-turnover experiments allow predicting the product distribution of ethanol chemisorption on silica depending on the treatment conditions, e.g. temperature of interaction between ethanol and silica, and suggest why, in general, dehydration catalysis on silica requires high temperatures, in order to avoid non-productive chemisorption via opening of siloxane bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Natal-Santiago MA, Dumesic JA (1998) J Catal 175:252

    Article  CAS  Google Scholar 

  2. Mertens G, Fripiat JJ (1973) J Colloid Interface Sci 42:169

    Article  CAS  Google Scholar 

  3. Borello E, Zecchina A, Morterra C, Ghiotti G (1967) J Phys Chem 71:2945

    Article  CAS  Google Scholar 

  4. Kondo S, Fujiwara H, Okazaki E, Ichii T (1980) J Colloid Interface Sci 74:328

    Article  Google Scholar 

  5. Jeziorowski H, Knoezinger H, Meye W, Muller HD (1973) J Chem Soc Faraday Trans I 69:1744

    Article  CAS  Google Scholar 

  6. Borello E, Zecchina A, Morterra C (1967) J Phys Chem 71:2938

    Article  CAS  Google Scholar 

  7. Kubelkova L, Schurer P, Jiru P (1969) Surf Sci 18:245

    Article  CAS  Google Scholar 

  8. Tedder LL, Lu GQ, Crowell JE (1991) J Appl Phys 69:7037

    Article  CAS  Google Scholar 

  9. Danner JB, Vohs JM (1993) Appl Surf Sci 72:409

    Article  CAS  Google Scholar 

  10. Kwak JH, Mei D, Peden CHF, Rousseau R, Szanyi J (2011) Catal Lett 141:649

    Article  CAS  Google Scholar 

  11. Kim KS, Barteau MA, Farneth WE (1988) Langmuir 4:533

    Article  CAS  Google Scholar 

  12. Tanabe K, Misono M, Ono Y, Hattori H (1989) New solid acids and bases: their catalytic properties, vol 51, Elsevier, Amsterdam

  13. Lusvardi VS, Barteau MA, Farneth WE (1995) J Catal 153:41

    Article  CAS  Google Scholar 

  14. Chiang H, Bhan A (2010) J Catal 271:251

    Article  CAS  Google Scholar 

  15. Mirth G, Eder F, Lercher JA (1994) Appl Spectrosc 48:194

    Article  CAS  Google Scholar 

  16. Zhuravlev LT (2000) Colloids Surf A 173:1

    Article  CAS  Google Scholar 

  17. Redhead PA (1962) Vacuum 12:203

    Article  CAS  Google Scholar 

  18. Jin T, Jo SK, Yoon C, White JM (1989) Chem Mater 1:308

    Article  CAS  Google Scholar 

  19. Idriss H, Barteau MA (2000) Adv Catal 45:261

    Article  CAS  Google Scholar 

  20. Fleischman SD, Scott SL (2011) J Am Chem Soc 133:4847–4855

    Article  CAS  Google Scholar 

  21. Minibaev RF, Zhuravlev NA, Bagatur’yantz AA, Alfimov MV (2009) Russ Phys J 52:1164

    Article  CAS  Google Scholar 

  22. Luts T, Iglesia E, Katz A (2011) J Mater Chem 21:982

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding by the Energy Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Katz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luts, T., Katz, A. Chemisorption and Dehydration of Ethanol on Silica: Effect of Temperature on Selectivity. Top Catal 55, 84–92 (2012). https://doi.org/10.1007/s11244-012-9771-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9771-9

Keywords

Navigation