Skip to main content

Advertisement

Log in

Condensation/Hydrogenation of Biomass-Derived Oxygenates in Water/Oil Emulsions Stabilized by Nanohybrid Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of fuel-range molecules by condensation of biomass-derived furfural and acetone has been studied in a biphasic emulsion system. Nanohybrids composed of basic oxide nanoparticles fused to carbon nanotubes have been used to simultaneously stabilize water/oil emulsions and catalyze the condensation reaction. Under the same conditions, higher conversions and higher fractions of fuel-range condensation products (C8–C13) have been obtained in the emulsion compared to those obtained in the single phase. Furthermore, when using metallized nanohybrids these emulsions have been used to hydrogenate the oil-soluble condensation products. Both model compounds and synthetic bio-oil mixtures have been used to demonstrate that catalytic emulsion systems could be effective for upgrading complex mixtures, such as pyrolysis oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Schmidt LD, Dauenhauer PJ (2007) Nature 447:914

    Article  CAS  Google Scholar 

  2. Rostrup-Nielsen JR (2005) Science 308:1421

    Article  CAS  Google Scholar 

  3. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Science 329:790

    Article  CAS  Google Scholar 

  4. US Department of Energy (2005) Feedstock Composition Gallery, Washington, DC.

  5. Resasco DE (2011) J Phys Chem Lett 2:2294

    Google Scholar 

  6. Huber GW, Dumesic JA (2006) Catal Today 111:119

    Article  CAS  Google Scholar 

  7. Bridgwater AV (1995) Fuel 14:631

    Article  Google Scholar 

  8. Sutton D, Kelleher B, Ross JRH (2001) Fuel Process Technol 73:155

    Article  CAS  Google Scholar 

  9. Mohan D, Pittman CU, Steele PH (2006) Energy Fuels 20:848

    Article  CAS  Google Scholar 

  10. Demirbas A (2007) Prog Energy Combust Sci 33:1

    Article  CAS  Google Scholar 

  11. Huber GW, Chheda JN, Barret CT, Dumesic JA (2005) Science 308:1446

    Google Scholar 

  12. Fakhfakh N, Cognet P, Cabassud M (2006) J Soc Chim Tunis 8:203

    CAS  Google Scholar 

  13. Fakhfakh N, Cognet P, Cabussad M, Luchesse Y, Dias de los Rios M (2008) Chem Eng Process 4:349

    Google Scholar 

  14. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Appl Catal B 66:111

    Article  CAS  Google Scholar 

  15. West RM, Liu ZY, Peter M, Gärtner CA, Dumesic JA (2008) J Mol Catal A 296:18

    Article  CAS  Google Scholar 

  16. Shen W, Tompsett GA, Hammond KD, Xing R, Dogan F, Grey CP, Conner WC Jr, Auerbach SM, Huber GW (2011) Appl Catal A 392:57

    Article  CAS  Google Scholar 

  17. Sádaba I, Ojeda M, Mariscal R, Fierro JLG, López Granados M (2011) Appl Catal B 101:638

    Article  Google Scholar 

  18. Sádaba I, Ojeda M, Mariscal R, Richards R, López Granados M (2011) Catal Today 167:77

    Article  Google Scholar 

  19. Choudary BM, Kantam ML, Sreekanth P, Bandopadhyay T, Figueras F, Tuel A (1999) J Mol Catal A Chem 142:361

    Article  CAS  Google Scholar 

  20. Liu H, Peng L, Zhang T, Li Y (2003) New J Chem 27:1159

    Article  CAS  Google Scholar 

  21. Lichtenthaler FW (2002) Acc Chem Res 35:728

    Article  CAS  Google Scholar 

  22. Lewkowski J, ARKIVOC (2001) 17

  23. Piskorz J, Scott DS, Radlien D (1988) Composition of oils obtained by fast pyrolysis of different woods. In: Soltes J, Milne TA (eds) Pyrolysis oils from biomass: producing analyzing and upgrading. American Chemical Society, Washington, DC, pp 167–178

  24. Czernik S, Bridgwater AV (2004) Energy Fuels 18:590

    Article  CAS  Google Scholar 

  25. Peacocke GVC, Russel PA, Jenkins JD, Bridgwater AV (1994) Biomass Bioenergy 7:169

    Article  CAS  Google Scholar 

  26. Crossley S, Faria J, Shen M, Resasco DE (2010) Science 327:68

    Article  CAS  Google Scholar 

  27. Shen M, Resasco DE (2009) Langmuir 25:10843

    Article  CAS  Google Scholar 

  28. Ruiz MP, Faria J, Shen M, Drexler S, Prasomsri T, Resasco DE (2010) ChemSusChem 4:964

  29. Faria J, Ruiz MP, Resasco DE (2010) Adv Synth Catal 352:2359

    Article  CAS  Google Scholar 

  30. Li XM, Reinhoudt D, Crego-Calama M (2007) Chem Soc Rev 36:1350

    Article  Google Scholar 

  31. Zhang L, Resasco DE (2009) Langmuir 25:4792

    Article  CAS  Google Scholar 

  32. Binks BP, Rodrigues JA (2005) Angew Chem Int Ed 44:441

    Article  CAS  Google Scholar 

  33. Tambe DE, Sharma MM (1994) Adv Colloid Interface Sci 52:1

    Article  CAS  Google Scholar 

  34. Bragg JR (1999) US Patent 5,855,243

  35. Gangadharan A, Shen M, Sooknoil T, Resasco DE, Mallinson RG (2010) Appl Catal A Gen 385:80

    Article  CAS  Google Scholar 

  36. Hori CE, Permana H, Simon Ng KY, Brenner A, More K, Rahmoeller KM, Belton D (1998) Appl Catal B 16:105

    Article  CAS  Google Scholar 

  37. Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21

    Article  CAS  Google Scholar 

  38. Santana RC, Do PT, Alvarez WE, Taylor JD, Sughrue EL, Resasco DE (2006) Fuel 85:643

    Article  CAS  Google Scholar 

  39. Taylor J, McCormick R, Clark W (2004) Relationship between molecular structure and compression Ignition fuels, both conventional and HCCI. August 2004 NREL Report on the MP-540-36726, Non-Petroleum-Based Fuels

  40. Do P, Crossley S, Santikunaporn M, Resasco DE (2007) Catalytic strategies for improving specific fuel properties. Catalysis: specialist periodical reports, vol 20. The Royal Society of Chemistry, London, p 33

  41. Crossley S, Alvarez WE, Resasco DE (2008) Energy Fuels 22:2455

    Article  CAS  Google Scholar 

  42. Jalali-Heravi M, Fatemi MH (2000) J Chromatogr A 897:227

    Article  CAS  Google Scholar 

  43. Dillon AC, Yudasaka M, Dresselhaus MS (2004) J Nanosci Nanotechnol 4:691

    Article  CAS  Google Scholar 

  44. Musumeci AW, Waclawik ER, Frost RL (2008) Spectrochim Acta A 71:140

    Article  Google Scholar 

  45. Kobayashi Y, Takagi D, Ueno Y, Homma Y (2004) Phys E 24:26

    Article  CAS  Google Scholar 

  46. Bachilo SM, Balzano L, Herrera JE, Pompeo F, Resasco DE, Weisman RB (2003) J Am Chem Soc 125:11186

    Article  CAS  Google Scholar 

  47. Simpson JR, Fagan JA, Becker ML, Hobbie EK, Hight Walker AR (2009) Carbon 47:3238

  48. Delhaes P, Couzi M, Trinquecoste M, Dentzer J, Hamidou H, Vix-Guterl C (2006) Carbon 44:3005

    Article  CAS  Google Scholar 

  49. Peng XD, Barteau MA (1989) Langmuir 5:1051

    Article  CAS  Google Scholar 

  50. Peng XD, Barteau MA (1992) Catal Lett 12:245

    Article  CAS  Google Scholar 

  51. Keresszegi C, Ferri D, Mallat T, Baiker A (2005) J Phys Chem B 109:958

    Article  CAS  Google Scholar 

  52. Solomons G, Fryhle C (1999) In: Organic Chemistry, 7th edn. Wiley, New York, p 1264

  53. Wilson WC (1932) In: Organic synthesis, vol 1. Wiley, New York, p 269

  54. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Sugar series, 13. Elsevier, Amsterdam, p 159

Download references

Acknowledgment

Funding was provided by NSF EPSCoR 0814361 and DoE EPSCOR (Grant DE-SC0004600). The authors also acknowledge SouthWest NanoTechnologies Inc. for providing some of the nanohybrids, and Mr. Anirudhan Gangadharan for preparing the ceria-zirconia mixed oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Resasco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 937 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapata, P.A., Faria, J., Pilar Ruiz, M. et al. Condensation/Hydrogenation of Biomass-Derived Oxygenates in Water/Oil Emulsions Stabilized by Nanohybrid Catalysts. Top Catal 55, 38–52 (2012). https://doi.org/10.1007/s11244-012-9768-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9768-4

Keywords

Navigation