Skip to main content
Log in

The Study of Chiral Adsorption Systems Using Synchrotron-Based Structural and Spectroscopic Techniques: Stereospecific Adsorption of Serine on Au-Modified Chiral Cu{531} Surfaces

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We apply modern synchrotron-based structural techniques to the study of serine adsorbed on the pure and Au-modified intrinsically chiral Cu{531} surface. XPS and NEXAFS data in combination with DFT show that on the pure surface both enantiomers adsorb in μ4 geometries (with de-protonated β-OH groups) at low coverage and in μ3 geometries at saturation coverage. Significantly larger enantiomeric differences are seen for the μ4 geometries, which involve substrate bonds of three side groups of the chiral center, i.e. a three-point interaction. The μ3 adsorption geometry, where only the carboxylate and amino groups form substrate bonds, leads to smaller but still significant enantiomeric differences, both in geometry and the decomposition behavior. When Cu{531} is modified by the deposition of 1 and 2 ML Au the orientations of serine at saturation coverage are significantly different from those on the clean surface. In all cases, however, a μ3 bond coordination is found at saturation involving different numbers of Au atoms, which leads to relatively small enantiomeric differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Easson LH, Stedman E (1933) Biochem J 27:1257

    CAS  Google Scholar 

  2. Davankov VA (1997) Chirality 9:99

    Article  CAS  Google Scholar 

  3. Proctor G (1997) Asymmetric synthesis. Oxford University Press, Oxford

    Google Scholar 

  4. Baiker A (1997) J Mol Catal A 115:473

    Article  CAS  Google Scholar 

  5. Baiker A (2000) J Mol Catal A 163:205

    Article  CAS  Google Scholar 

  6. Gellman AJ, Horvath JD, Buelow MT (2001) J Mol Catal A 167:3

    Article  CAS  Google Scholar 

  7. Attard GA (2001) J Phys Chem B 105:3158

    Article  CAS  Google Scholar 

  8. Held G, Gladys MJ (2008) Top Catal 48:128

    Article  CAS  Google Scholar 

  9. Gellman AJ (2010) ACS Nano 4(1):5

  10. Attard GA, Ahmadi A, Feliu J, Rodes A, Herrero E, Blaise S, Jerkiewicz G (1999) J Phys Chem B 103:1381

    Article  CAS  Google Scholar 

  11. McFadden CF, Cremer PS, Gellman AJ (1996) Langmuir 12:2483

    Article  CAS  Google Scholar 

  12. Jenkins SJ, Pratt S (2007) Surf Sci Rep 62:373

    Article  CAS  Google Scholar 

  13. Horvath JD, Gellman AJ (2001) J Am Chem Soc 123:7953

    Article  CAS  Google Scholar 

  14. Horvath JD, Gellman AJ (2002) J Am Chem Soc 124:2384

    Article  CAS  Google Scholar 

  15. Horvath JD, Koritnik A, Kamakoti P, Sholl DS, Gellman AJ (2004) J Am Chem Soc 126:14988

    Article  CAS  Google Scholar 

  16. Huang Y, Gellman AJ (2008) Catal Lett 125(3–4):177

    Article  CAS  Google Scholar 

  17. Ahmadi A, Attard GA, Feliu J, Rodes A (1999) Langmuir 15:2420

    Article  CAS  Google Scholar 

  18. Hazen RM, Sholl DS (2003) Nat Mater 2:367

    Article  CAS  Google Scholar 

  19. Sljivancanin Z, Gothelf KV, Hammer B (2002) J Am Chem Soc 124:14789

    Article  CAS  Google Scholar 

  20. Fasel R, Wider J, Quitmann C, Ernst K-H, Greber T (2004) Angew Chem Int Ed 43:2853

    Article  CAS  Google Scholar 

  21. Bhatia B, Sholl DS (2005) Angew Chem Int Ed 44:7761

    Article  CAS  Google Scholar 

  22. Greber T, Sljivancanin Z, Wider J, Hammer B (2006) Phys Rev Lett 96:056103

    Article  CAS  Google Scholar 

  23. Jones G, Jenkins SJ, King DA (2006) Surf Sci 600:L224

    Article  CAS  Google Scholar 

  24. Gladys MJ, Stevens AV, Scott NR, Jones G, Batchelor D, Held G (2007) J Phys Chem C 111:8331

    Article  CAS  Google Scholar 

  25. Bhatia B, Sholl DS (2008) J Chem Phys 128:144709

    Article  Google Scholar 

  26. James JN, Sholl DA (2008) Curr Opin Colloid Interface Sci 13:60

    Article  CAS  Google Scholar 

  27. Eralp T, Zheleva ZV, Shavorskiy A, Dhanak VR, Held G (2010) Langmuir 26:10918

    Article  CAS  Google Scholar 

  28. Eralp T, Ievin A, Shavorskiy A, Jenkins SJ, Held G (under review)

  29. Power TD, Asthagiri A, Sholl DS (2002) Langmuir 18:3737

    Article  CAS  Google Scholar 

  30. Puisto SR, Held G, Ranea V, Jenkins SJ, Mola EE, King DA (2005) J Phys Chem B 109:22456

    Article  CAS  Google Scholar 

  31. Jones G, Gladys MJ, Ottal J, Jenkins SJ, Held G (2009) Phys Rev B 79:165420

    Article  Google Scholar 

  32. Sayago DI, Polcik M, Nisbet G, Lamont CLA, Woodruff DP (2005) Surf Sci 590:76

    Article  CAS  Google Scholar 

  33. Fadley CS (1992) Synchrotron radiation research: advances in surface science, vol 1, chap. 9. Plenum Press, New York

    Google Scholar 

  34. Woodruff DP, Bradshaw AM (1994) Rep Prog Phys 57:1029

    Article  CAS  Google Scholar 

  35. Woodruff DP (2007) Surf Sci Rep 62:1

    Article  CAS  Google Scholar 

  36. Bonzel H (1993) Prog Surf Sci 42(1–4):219

    Article  CAS  Google Scholar 

  37. Power TD, Sholl DS (1999) J Vac Sci Technol A 17:1700

    Article  CAS  Google Scholar 

  38. Bhatia B, Sholl DS (2005) J Chem Phys 122:204707

    Article  Google Scholar 

  39. Barlow SM, Raval R (2003) Surf Sci Rep 50:201

    Article  CAS  Google Scholar 

  40. Forster M, Dyer MS, Persson M, Raval R (2009) J Am Chem Soc 131:10173

    Article  CAS  Google Scholar 

  41. Baddeley CJ, Held G (2010) Chiral molecules on surfaces. Comprehensive nanoscience and technology, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  42. Hasselström J, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Petterson LGM, Samant MG, Stöhr J (1998) Surf Sci 407:221

    Article  Google Scholar 

  43. Polcik M, Allegretti F, Sayago DI, Nisbet G, Lamont CLA, Woodruff DP (2004) Phys Rev Lett 92:236103

    Article  CAS  Google Scholar 

  44. Barlow SM, Louafi S, Le Roux D, Williams J, Muryn C, Haq S, Raval R (2005) Surf Sci 590:243

    Article  CAS  Google Scholar 

  45. Jones G, Jones LB, Thibault-Starzyk F, Seddon EA, Raval R, Jenkins SJ, Held G (2006) Surf Sci 600:1924

    Article  CAS  Google Scholar 

  46. Gao F, Li Z, Wanga Y, Burkholder L, Tysoe WT (2007) J Phys Chem C 111:9981

    Article  CAS  Google Scholar 

  47. Gao F, Li Z, Wang Y, Burkholder L, Tysoe WT (2007) Surf Sci 601:3276

    Article  CAS  Google Scholar 

  48. Gao F, Wang Y, Burkholder L, Tysoe WT (2007) Surf Sci 601:3579

    Article  CAS  Google Scholar 

  49. Eralp T, Shavorskiy A, Zheleva ZV, Held G, Kalashnyk N, Ning Y, Linderoth TR (2010) Langmuir 26:18841

    Article  CAS  Google Scholar 

  50. Eralp T, Shavorskiy A, Held G (2011) Surf Sci 605:468

    Article  CAS  Google Scholar 

  51. Stöhr J (1996) NEXAFS spectroscopy. Springer series in surface sciences, 2nd edn. Springer, Berlin

    Google Scholar 

  52. Nyberg J, Hasselström M, Karis O, Wassdahl N, Weinelt M, Nilsson A, Petterson LGM (2000) J Chem Phys 112:5420

    Article  CAS  Google Scholar 

  53. Eralp T (2010) Fundamental enantiospecific interactions of amino acids on metal surfaces. PhD thesis, University of Reading

  54. Petoral RM, Uvdal K (2003) J Electron Spectrosc Relat Phenom 128:159

    Article  CAS  Google Scholar 

  55. Steiner P, Hüfner S, Mårtensson N, Johansson B (1981) Solid State Commun 37:73

    Article  CAS  Google Scholar 

  56. Kuhn M, Sham TK (1994) Phys Rev B 49:1647

    Article  CAS  Google Scholar 

  57. Naumovi D, Stuck A, Greber T, Osterwalder J, Schlapbach L (1992) Surf Sci 269:719

    Article  Google Scholar 

  58. Shen YG, Yao J, O’Connor DJ, King BV, MacDonald RJ (1996) J Phys Condens Matter 8:4903

    Article  CAS  Google Scholar 

  59. Ruban AV, Skriver HL, Nørskov JK (1999) Phys Rev B 59:15990

    Article  Google Scholar 

  60. Zheleva Z (2011) PhD thesis, Reading

  61. Denecke R, Mårtensson N (2005) Adsorbate induced surface core level shifts of metals, vol III/42A4 of Landolt-Börnstein numerical data and functional relationships in science and technology, new series, 1st edn. Springer, Berlin

    Google Scholar 

  62. Shavorskiy A, Aksoy F, Grass ME, Liu Z, Bluhm H, Held G (2011) J Am Chem Soc 133:6659

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 226716, through the Marie Curie Early Stage Training Network “MONET” (No. MEST-CT-2005-020908) and the EPSRC. The authors would also like to acknowledge the support during the experiments provided by the staff of BESSY II, in particular D. Batchelor and thank S. J. Jenkins and A. Ievins for making the results of their DFT calculations available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Held.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eralp, T., Cornish, A., Shavorskiy, A. et al. The Study of Chiral Adsorption Systems Using Synchrotron-Based Structural and Spectroscopic Techniques: Stereospecific Adsorption of Serine on Au-Modified Chiral Cu{531} Surfaces. Top Catal 54, 1414–1428 (2011). https://doi.org/10.1007/s11244-011-9757-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9757-z

Keywords

Navigation