Skip to main content
Log in

Computational Investigation of the Thermochemistry and Kinetics of Steam Methane Reforming Over a Multi-Faceted Nickel Catalyst

Topics in Catalysis Aims and scope Submit manuscript

Cite this article

Abstract

A microkinetic model of steam methane reforming over a multi-faceted nickel surface using plane-wave, periodic boundary condition density functional theory is presented. The multi-faceted model consists of a Ni(111) surface, a Ni(100) surface, and nickel step edge sites that are modeled as a Ni(211) surface. Flux and sensitivity analysis are combined to gain an increased understanding of the important reactions, intermediates, and surface facets in SMR. Statistical thermodynamics are applied to allow for the investigation of SMR under industrially-relevant conditions (e.g., temperatures in excess of 500 °C and pressures in excess of 1 bar). The most important surface reactions are found to occur at the under-coordinated step edge sites modeled using the Ni(211) surface as well as on the Ni(100) surface. The primary reforming pathway is predicted to be through C* + O* → CO* at high temperatures; however, hydrogen-mediated reactions such as C* + OH* → COH* and CH* + O* → CHO* are predicted to become more important at low temperatures. The rate-limiting reactions are predicted to be dissociative chemisorption of methane in addition to the aforementioned C–O addition reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Solomon BD, Banerjee A (2006) A global survey of hydrogen energy research, development and policy. Energy Policy 34(7):781–792

    Article  Google Scholar 

  2. US Department of Energy. Hydrogen Production Fact Sheet. 2006

  3. Lægsgaard Jørgensen S, Nielsen PEH, Lehrmann P (1995) Steam reforming of methane in a membrane reactor. Catal Today 25(3–4):303–307

    Article  Google Scholar 

  4. Chen Z, Yan Y, Elnashaie SSEHSSEH (2004) Catalyst deactivation and engineering control for steam reforming of higher hydrocarbons in a novel membrane reformer. Chem Eng Sci 59(10):1965–1978

    Article  CAS  Google Scholar 

  5. Blok K, Williams RH, Katofsky RE, Hendriks CA (1997) Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy 22(2–3):161–168

    Article  CAS  Google Scholar 

  6. Shishkin M, Ziegler T (2009) Oxidation of H2, CH4, and CO molecules at the interface between Nickel and Yttria-Stabilized Zirconia: a theoretical study based on DFT. J Phys Chem C113(52):21667–21678

    Google Scholar 

  7. Mogensen D, Grunwaldt JD, Hendriksen PV, Dam-Johansen K, Nielsen JU (2010) Internal steam reforming in solid oxide fuel cells: status and opportunities of kinetic studies and their impact on modelling. J Power Sources 196(1):25–38

    Article  Google Scholar 

  8. Ingram DB, Linic S (2009) First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. J Electrochem Soc 156(12):B1457–B1465

    Article  CAS  Google Scholar 

  9. Nørskov JK, Christensen CH (2006) Toward efficient hydrogen production at surfaces. Science 312(5778):1322–1323

    Article  Google Scholar 

  10. Sehested J (2006) Four challenges for nickel steam-reforming catalysts. Catal Today 111(1–2):103–110

    Article  CAS  Google Scholar 

  11. Pedernera MN, Piña J, Borio DO (2007) Kinetic evaluation of carbon formation in a membrane reactor for methane reforming. Chem Eng J 134(1–3):138–144

    Article  CAS  Google Scholar 

  12. Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224(2):370–383

    Article  CAS  Google Scholar 

  13. Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35(1):88–96

    Article  CAS  Google Scholar 

  14. Aparicio LM (1997) Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts. J Catal 165(2):262–274

    Article  CAS  Google Scholar 

  15. Chen D, Lødeng R, Anundskås A, Olsvik O, Holmen A (2001) Deactivation during carbon dioxide reforming of methane over Ni catalyst: microkinetic analysis. Chem Eng Sci 56(4):1371–1379

    Article  CAS  Google Scholar 

  16. Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE (1993) The microkinetics of heterogeneous catalysis. ACS Professional Reference Book, American Chemical Society, Washington, DC, p 315

    Google Scholar 

  17. Chen D, Lødeng R, Svendsen H, Holmen A (2010) Hierarchical multiscale modeling of methane steam reforming reactions. Industrial & Engineering Chemistry Research (in Print)

  18. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259(1):147–160

    Article  CAS  Google Scholar 

  19. Zhu Y-A, Chen D, Zhou X-G, Yuan W-K (2009) DFT studies of dry reforming of methane on Ni catalyst. Catal Today 148(3–4):260–267

    Article  CAS  Google Scholar 

  20. Nikolla E, Schwank J, Linic S (2009) Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: the impact of the formation of Ni alloy on chemistry. J Catal 263(2):220–227

    Article  CAS  Google Scholar 

  21. Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209(2):365–384

    Article  CAS  Google Scholar 

  22. Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2006) CO2 reforming of CH4 on Ni(111): a density functional theory calculation. J Phys Chem B110(20):9976–9983

    Google Scholar 

  23. Blaylock DW, Ogura T, Green WH, Beran GJO (2009) Computational investigation of thermochemistry and kinetics of steam methane reforming on Ni(111) under realistic conditions. J Phys Chem C113(12):4898–4908

    Google Scholar 

  24. Kresse G, Hafner J (1993) Ab initio molecular dynamics of liquid metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmueller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  27. Klink C, Olesen L, Besenbacher F, Stensgaard I, Laegsgaard E, Lang ND (1993) Interaction of C with Ni(100): Atom-resolved studies of the “clock” reconstruction. Phys Rev Lett 71(26):4350

    Article  CAS  Google Scholar 

  28. Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59(11):7413

    Article  Google Scholar 

  29. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis–calculations and concepts. In: Hammer B, Norskov JK (eds) Advances in catalysis, vol 45. Academic Press, New York, pp 71–129

    Google Scholar 

  30. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B50(24):17953

    Google Scholar 

  31. Henkelman G, Jonsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phy 111(15):7010–7022

    Article  CAS  Google Scholar 

  32. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  33. Henkelman G. http://theory.cm.utexas.edu/vtsttools/dynmat/. Accessed Nov 2010

  34. Li H, Zhao M, Jiang Q (2009) Cohesive energy of clusters referenced by Wulff construction. J Phys Chem C113(18):7594–7597

    Google Scholar 

  35. Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2007) Theoretical trends in particle size effects for the oxygen reduction reaction. Z Phys Chem 221(9–10):1209–1220

    Article  CAS  Google Scholar 

  36. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307(5709):555–558

    Article  CAS  Google Scholar 

  37. Jiang Q, Lu HM, Zhao M (2004) Modelling of surface energies of elemental crystals. J Phys Condens Matter 16(4):521–530

    Article  CAS  Google Scholar 

  38. Cwiklik L (2007) Influence of surface diffusion on catalytic reactivity of spatially inhomogeneous surfaces-mean-field modeling. Chem Phys Lett 449(4–6):304–308

    Article  CAS  Google Scholar 

  39. Lapujoulade J, Neil KS (1972) Chemisorption of hydrogen on the (111) plane of nickel. J Chem Phys 57(8):3535–3545

    Article  CAS  Google Scholar 

  40. Lapujoulade J, Neil KS (1973) Hydrogen adsorption on Ni (100). Surf Sci 35:288–301

    Article  CAS  Google Scholar 

  41. Stuckless JT, Al-Sarraf N, Wartnaby C, King DA (1993) Calorimetric heats of adsorption for CO on nickel single crystal surfaces. J Chem Phys 99(3):2202–2212

    Article  CAS  Google Scholar 

  42. Stuckless JT, Wartnaby CE, Al-Sarraf N, Dixon-Warren SJB, Kovar M, King DA (1997) Oxygen chemisorption and oxide film growth on Ni{100}, {110}, and {111}: Sticking probabilities and microcalorimetric adsorption heats. J Chem Phys 106(5):2012–2030

    Article  CAS  Google Scholar 

  43. Liu Z-P, Hu P (2003) General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc 125(7):1958–1967

    Article  CAS  Google Scholar 

  44. Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113(24):10548–10553

    Article  CAS  Google Scholar 

  45. Jakobsen JG, Joergensen TL, Chorkendorff I, Sehested J (2010) Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst. Appl Catal A377(1–2):158–166

    Google Scholar 

  46. Dooling DJ, Broadbelt LJ (2001) Microkinetic models and dynamic Monte Carlo simulations of nonuniform catalytic systems. AIChE J 47(5):1193–1202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the catalysis researchers at the Norwegian University of Science and Technology (NTNU), in particular Professors Anders Holmen and De Chen, for many helpful conversations. This work is funded, in part, through a collaboration with NTNU supported by StatoilHydro and the Norwegian Research Council. The National Science Foundation is also acknowledged for supporting D.W.B. through the Graduate Research Fellowship Program. In addition, the Norwegian Research Council and the National Science Foundation are acknowledged for support of D.W.B. through the Nordic Research Opportunity. This publication is also based on work supported, in part by King Abdullah University of Science and Technology (KAUST). The computations in this work have been supported in part by the National Science Foundation through TeraGrid resources provided by the NCSA, grant number TG-CHE080047. Finally, Yi-An Zhu acknowledges support by the Doctoral Fund of Ministry of Education of China (No. 200802511007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Green.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blaylock, D.W., Zhu, YA. & Green, W.H. Computational Investigation of the Thermochemistry and Kinetics of Steam Methane Reforming Over a Multi-Faceted Nickel Catalyst. Top Catal 54, 828 (2011). https://doi.org/10.1007/s11244-011-9704-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11244-011-9704-z

Keywords

Navigation