Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of the Mechanism of the Electrochemical Promotion of Rh/YSZ Catalysts for C2H4 Oxidation Via AC Impedance Spectroscopy

  • 181 Accesses

  • 5 Citations

Abstract

The electrochemical promotion of Rh/YSZ catalysts for C2H4 oxidation was investigated together with the mechanism of electrochemical promotion via the use of AC impedance spectroscopy. The impedance response consists of two distinct semicircles and provides strong support for the sacrificial promoter mechanism of electrochemical promotion. The impedance analysis of the low frequency part of all spectra show the existence of a finite length Gerischer impedance which corresponds to the effective double layer formed by the spillover of promoting anionic oxygen from the YSZ support to the rhodium/gas interface and its slow consumption there by adsorbed hydrocarbon fragments. AC impedance analysis provides values both for the rate of consumption of the promoting spillover oxygen species as well as for the stability and capacitance the catalyst/gas double layer in various gaseous environments and temperatures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Göpel W (1994) Sens Actuators B 18–19:1–21

  2. 2.

    Mandelis A, Christofides C (1993) Solid state gas sensor devices. Wiley, New York

  3. 3.

    Maier J (2000) Solids—defects and function: principles in the physical chemistry of solid state chemistry. B.G Teubner, Leipzig

  4. 4.

    Singhal SC (2000) Solid State Ionics 135:305–313

  5. 5.

    Kalhammer FR (2000) Solid State Ionics 135:315–323

  6. 6.

    Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, Inc, New York

  7. 7.

    Di Cosimo R, Burrington JD, Grasselli RK (1986) J Catal 102:234–239

  8. 8.

    Haller GL (2003) J Catal 216:12–22

  9. 9.

    Vayenas CG, Brosda S, Pliangos C (2003) J Catal 216:487–504

  10. 10.

    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627

  11. 11.

    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) The electrochemical activation of catalysis, modern aspects of electrochemistry, vol 29. Kluwer Academic/Plenum Publishers, New York, pp 57–202

  12. 12.

    Foti G, Bolzonella L, Comninellis C (2003) In: Vayenas CG, Conway BE, White ER (eds) Electrochemical promotion of catalysis, modern aspects of electrochemistry, vol 36. Kluwer Academic/Plenum Publishers, New York, pp 191–254

  13. 13.

    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New York

  14. 14.

    Lambert RM, Williams F, Palermo A, Tikhov MS (2000) Top Catal 13:91–98

  15. 15.

    Harkness I, Lambert RM (1995) J Catal 152:211–214

  16. 16.

    Cavalca CA, Haller GL (1998) J Catal 177:389–395

  17. 17.

    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Berichte Bunsengesellschaft der Physikalischen Chemie 94:996–1000

  18. 18.

    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) J Am Chem Soc 119:1155–11550

  19. 19.

    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412–421

  20. 20.

    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B Environ 73(2):73–83

  21. 21.

    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B Environ 73:42–50

  22. 22.

    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Comm 9:17–20

  23. 23.

    Pliangos C, Yentekakis LV, Ladas S, Vayenas CG (1996) J Catal 159:189–203

  24. 24.

    Petrolekas PD, Balomenou S, Vayenas CG (1998) J Electrochem Soc 145:1202–1206

  25. 25.

    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature (Lond) 370:45–49

  26. 26.

    Pliangos C, Yentekakis IV, Papadakis VG, Vayenas CG, Verykios XE (1997) Appl Catal B Environ 14:161–173

  27. 27.

    Pliangos C, Yentekakis IV, Verykios XE, Vayenas CG (1995) J Catal 154:124–136

  28. 28.

    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis C, Vayenas CG (2005) Catal Lett 105(1–2):15–21

  29. 29.

    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis C, Vayenas CG (2005) J Electrochem Soc 152(2):E40–E49

  30. 30.

    Brosda S, Badas T, Vayenas CG (2008) Proceedings of the 2nd international conference on the electrochemical promotion of catalysis and its application (EPOCAP), Oleron Island, France, pp 52–57

  31. 31.

    Dragoo L, Chiang CK, Franklin AD, Benthin J (1982) Solid State Ionics 7:249–255

  32. 32.

    Bentzen JJ, Andersen NH, Polsen FW, Sorensen OT, Schram R (1988) Solid State Ionics 28/30:550–559

  33. 33.

    Manning PS, Sirman JD, De Souza RA, Kilner JA (1997) Solid State Ionics 100:1–10

  34. 34.

    Chen CC, Nasrallah MM, Anderson HU (1994) Solid State Ionics 70/71:101–108

  35. 35.

    Bauerle JE (1969) J Phys Chem Solids 30:2657–2670

  36. 36.

    Verkerk MJ, Burggraaf AJ (1983) J Electrochem Soc 130:76–84

  37. 37.

    Winnubst AJA, Scharenborg AHA, Burggraaf AJ (1984) Solid State Ionics 14:319–327

  38. 38.

    Sakurai K, Nagamoto H, Inoue H (1989) Solid State Ionics 35:405–410

  39. 39.

    VanHassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:155–171 and 48:139–154

  40. 40.

    Robertson NL, Michaels JN (1991) J Electrochem Soc 138(5):1494–1499

  41. 41.

    Kuzin BL, Bronin DI (2000) Solid State Ionics 136/137:45–50

  42. 42.

    Velle OJ, Norby T, Kofstad P (1990) Solid State Ionics 47:161–167

  43. 43.

    Kek D, Mogensen M, Pejovnik S (2001) J Electrochem Soc 148/8:A878–A886

  44. 44.

    Kaneko H, Nagai A, Taimatsu H (1989) Solid State Ionics 35:257–262

  45. 45.

    Baranova EA, Foti G, Jotterand H, Comninellis C (2007) Top Catal 44/3:419–425

  46. 46.

    Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ionics 136/137:863–872

  47. 47.

    Gerischer H (1951) Z Phys Chem 198:2286–2313

  48. 48.

    Sluyters-Rehbach M, Sluyters JH (1970) Bard AJ (ed) Electrochemical chemistry, vol 4. Marcel Dekker. New York, p 68

  49. 49.

    Sluyters-Rehbach M, Sluyters JH (1984) In: Yeager E et al (ed) Comprehensive treatise of electrochemistry, vol 9. Plenum, New York, p 274

  50. 50.

    Boukamp BA, Bouwmeester JHM (2003) Solid State Ionics 157:29–33

  51. 51.

    Boukamp BA, Verbraeken M, Blank DHA, Holtappels P (2006) Solid State Ionics 117:2539–2541

  52. 52.

    Meland AK, Bedeaux D, Kjelstrup S (2005) J Phys Chem B 109:21380–21388

  53. 53.

    Boukamp BA/UT 85-93, EQUIVALENT CIRCUIT Version 4.51/1993 IBM-CGA screen, AC immitance analysis system written by Bernard A. Boukamp, Faculty of Chemical Technology University of Twente, PO Box. 217, 7500 AE Enschede, The Netherlands, Copyright: B.A. Boukamp/UT 85-93

  54. 54.

    Bard A, Faulkner LR (2001) Electrochemical methods: fundamentals and application, 2nd edn. Wiley, New York

  55. 55.

    Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum Press, New York

  56. 56.

    Freund HJ (2010) Chem Eur J 16:9384–9397

  57. 57.

    Mutoro E, Koutsodontis C, Luerssen B, Brosda S, Vayenas CG, Janek J (2010) Appl Catal B Environ 100:328–337

Download references

Author information

Correspondence to C. G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brosda, S., Badas, T. & Vayenas, C.G. Study of the Mechanism of the Electrochemical Promotion of Rh/YSZ Catalysts for C2H4 Oxidation Via AC Impedance Spectroscopy. Top Catal 54, 708 (2011). https://doi.org/10.1007/s11244-011-9679-9

Download citation

Keywords

  • Rh catalyst-electrode
  • Ethylene oxidation
  • Electrochemical promotion
  • Effective double layer capacitance
  • AC impedance spectroscopy
  • Gerischer impedance