Topics in Catalysis

, 54:708 | Cite as

Study of the Mechanism of the Electrochemical Promotion of Rh/YSZ Catalysts for C2H4 Oxidation Via AC Impedance Spectroscopy

  • S. Brosda
  • T. Badas
  • C. G. Vayenas
Original Paper


The electrochemical promotion of Rh/YSZ catalysts for C2H4 oxidation was investigated together with the mechanism of electrochemical promotion via the use of AC impedance spectroscopy. The impedance response consists of two distinct semicircles and provides strong support for the sacrificial promoter mechanism of electrochemical promotion. The impedance analysis of the low frequency part of all spectra show the existence of a finite length Gerischer impedance which corresponds to the effective double layer formed by the spillover of promoting anionic oxygen from the YSZ support to the rhodium/gas interface and its slow consumption there by adsorbed hydrocarbon fragments. AC impedance analysis provides values both for the rate of consumption of the promoting spillover oxygen species as well as for the stability and capacitance the catalyst/gas double layer in various gaseous environments and temperatures.


Rh catalyst-electrode Ethylene oxidation Electrochemical promotion Effective double layer capacitance AC impedance spectroscopy Gerischer impedance 


  1. 1.
    Göpel W (1994) Sens Actuators B 18–19:1–21CrossRefGoogle Scholar
  2. 2.
    Mandelis A, Christofides C (1993) Solid state gas sensor devices. Wiley, New YorkGoogle Scholar
  3. 3.
    Maier J (2000) Solids—defects and function: principles in the physical chemistry of solid state chemistry. B.G Teubner, LeipzigGoogle Scholar
  4. 4.
    Singhal SC (2000) Solid State Ionics 135:305–313CrossRefGoogle Scholar
  5. 5.
    Kalhammer FR (2000) Solid State Ionics 135:315–323CrossRefGoogle Scholar
  6. 6.
    Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticles. Marcel Dekker, Inc, New YorkGoogle Scholar
  7. 7.
    Di Cosimo R, Burrington JD, Grasselli RK (1986) J Catal 102:234–239CrossRefGoogle Scholar
  8. 8.
    Haller GL (2003) J Catal 216:12–22CrossRefGoogle Scholar
  9. 9.
    Vayenas CG, Brosda S, Pliangos C (2003) J Catal 216:487–504CrossRefGoogle Scholar
  10. 10.
    Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627CrossRefGoogle Scholar
  11. 11.
    Vayenas CG, Jaksic MM, Bebelis S, Neophytides SG (1996) In: Bockris JOM, Conway BE, White RE (eds) The electrochemical activation of catalysis, modern aspects of electrochemistry, vol 29. Kluwer Academic/Plenum Publishers, New York, pp 57–202Google Scholar
  12. 12.
    Foti G, Bolzonella L, Comninellis C (2003) In: Vayenas CG, Conway BE, White ER (eds) Electrochemical promotion of catalysis, modern aspects of electrochemistry, vol 36. Kluwer Academic/Plenum Publishers, New York, pp 191–254Google Scholar
  13. 13.
    Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion, electrochemical promotion and metal-support interactions. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  14. 14.
    Lambert RM, Williams F, Palermo A, Tikhov MS (2000) Top Catal 13:91–98CrossRefGoogle Scholar
  15. 15.
    Harkness I, Lambert RM (1995) J Catal 152:211–214CrossRefGoogle Scholar
  16. 16.
    Cavalca CA, Haller GL (1998) J Catal 177:389–395CrossRefGoogle Scholar
  17. 17.
    Baltruschat H, Anastasijevic NA, Beltowska-Brzezinska M, Hambitzer G, Heitbaum J (1990) Berichte Bunsengesellschaft der Physikalischen Chemie 94:996–1000Google Scholar
  18. 18.
    Ploense L, Salazar M, Gurau B, Smotkin ES (1997) J Am Chem Soc 119:1155–11550CrossRefGoogle Scholar
  19. 19.
    Vernoux P, Gaillard F, Bultel L, Siebert E, Primet M (2002) J Catal 208:412–421CrossRefGoogle Scholar
  20. 20.
    Vernoux P, Gaillard F, Karoum R, Billard A (2007) Appl Catal B Environ 73(2):73–83CrossRefGoogle Scholar
  21. 21.
    Dorado F, de Lucas-Consuegra A, Vernoux P, Valverde JL (2007) Appl Catal B Environ 73:42–50CrossRefGoogle Scholar
  22. 22.
    de Lucas-Consuegra A, Dorado F, Valverde JL, Karoum R, Vernoux P (2008) Catal Comm 9:17–20CrossRefGoogle Scholar
  23. 23.
    Pliangos C, Yentekakis LV, Ladas S, Vayenas CG (1996) J Catal 159:189–203CrossRefGoogle Scholar
  24. 24.
    Petrolekas PD, Balomenou S, Vayenas CG (1998) J Electrochem Soc 145:1202–1206CrossRefGoogle Scholar
  25. 25.
    Neophytides S, Tsiplakides D, Stonehart P, Jaksic M, Vayenas CG (1994) Nature (Lond) 370:45–49CrossRefGoogle Scholar
  26. 26.
    Pliangos C, Yentekakis IV, Papadakis VG, Vayenas CG, Verykios XE (1997) Appl Catal B Environ 14:161–173CrossRefGoogle Scholar
  27. 27.
    Pliangos C, Yentekakis IV, Verykios XE, Vayenas CG (1995) J Catal 154:124–136CrossRefGoogle Scholar
  28. 28.
    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis C, Vayenas CG (2005) Catal Lett 105(1–2):15–21CrossRefGoogle Scholar
  29. 29.
    Baranova EA, Thursfield A, Brosda S, Foti G, Comninellis C, Vayenas CG (2005) J Electrochem Soc 152(2):E40–E49CrossRefGoogle Scholar
  30. 30.
    Brosda S, Badas T, Vayenas CG (2008) Proceedings of the 2nd international conference on the electrochemical promotion of catalysis and its application (EPOCAP), Oleron Island, France, pp 52–57Google Scholar
  31. 31.
    Dragoo L, Chiang CK, Franklin AD, Benthin J (1982) Solid State Ionics 7:249–255CrossRefGoogle Scholar
  32. 32.
    Bentzen JJ, Andersen NH, Polsen FW, Sorensen OT, Schram R (1988) Solid State Ionics 28/30:550–559CrossRefGoogle Scholar
  33. 33.
    Manning PS, Sirman JD, De Souza RA, Kilner JA (1997) Solid State Ionics 100:1–10CrossRefGoogle Scholar
  34. 34.
    Chen CC, Nasrallah MM, Anderson HU (1994) Solid State Ionics 70/71:101–108CrossRefGoogle Scholar
  35. 35.
    Bauerle JE (1969) J Phys Chem Solids 30:2657–2670CrossRefGoogle Scholar
  36. 36.
    Verkerk MJ, Burggraaf AJ (1983) J Electrochem Soc 130:76–84Google Scholar
  37. 37.
    Winnubst AJA, Scharenborg AHA, Burggraaf AJ (1984) Solid State Ionics 14:319–327CrossRefGoogle Scholar
  38. 38.
    Sakurai K, Nagamoto H, Inoue H (1989) Solid State Ionics 35:405–410CrossRefGoogle Scholar
  39. 39.
    VanHassel BA, Boukamp BA, Burggraaf AJ (1991) Solid State Ionics 48:155–171 and 48:139–154Google Scholar
  40. 40.
    Robertson NL, Michaels JN (1991) J Electrochem Soc 138(5):1494–1499CrossRefGoogle Scholar
  41. 41.
    Kuzin BL, Bronin DI (2000) Solid State Ionics 136/137:45–50CrossRefGoogle Scholar
  42. 42.
    Velle OJ, Norby T, Kofstad P (1990) Solid State Ionics 47:161–167CrossRefGoogle Scholar
  43. 43.
    Kek D, Mogensen M, Pejovnik S (2001) J Electrochem Soc 148/8:A878–A886CrossRefGoogle Scholar
  44. 44.
    Kaneko H, Nagai A, Taimatsu H (1989) Solid State Ionics 35:257–262CrossRefGoogle Scholar
  45. 45.
    Baranova EA, Foti G, Jotterand H, Comninellis C (2007) Top Catal 44/3:419–425CrossRefGoogle Scholar
  46. 46.
    Frantzis AD, Bebelis S, Vayenas CG (2000) Solid State Ionics 136/137:863–872CrossRefGoogle Scholar
  47. 47.
    Gerischer H (1951) Z Phys Chem 198:2286–2313Google Scholar
  48. 48.
    Sluyters-Rehbach M, Sluyters JH (1970) Bard AJ (ed) Electrochemical chemistry, vol 4. Marcel Dekker. New York, p 68Google Scholar
  49. 49.
    Sluyters-Rehbach M, Sluyters JH (1984) In: Yeager E et al (ed) Comprehensive treatise of electrochemistry, vol 9. Plenum, New York, p 274Google Scholar
  50. 50.
    Boukamp BA, Bouwmeester JHM (2003) Solid State Ionics 157:29–33CrossRefGoogle Scholar
  51. 51.
    Boukamp BA, Verbraeken M, Blank DHA, Holtappels P (2006) Solid State Ionics 117:2539–2541CrossRefGoogle Scholar
  52. 52.
    Meland AK, Bedeaux D, Kjelstrup S (2005) J Phys Chem B 109:21380–21388CrossRefGoogle Scholar
  53. 53.
    Boukamp BA/UT 85-93, EQUIVALENT CIRCUIT Version 4.51/1993 IBM-CGA screen, AC immitance analysis system written by Bernard A. Boukamp, Faculty of Chemical Technology University of Twente, PO Box. 217, 7500 AE Enschede, The Netherlands, Copyright: B.A. Boukamp/UT 85-93Google Scholar
  54. 54.
    Bard A, Faulkner LR (2001) Electrochemical methods: fundamentals and application, 2nd edn. Wiley, New YorkGoogle Scholar
  55. 55.
    Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum Press, New YorkGoogle Scholar
  56. 56.
    Freund HJ (2010) Chem Eur J 16:9384–9397CrossRefGoogle Scholar
  57. 57.
    Mutoro E, Koutsodontis C, Luerssen B, Brosda S, Vayenas CG, Janek J (2010) Appl Catal B Environ 100:328–337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Academy of AthensAthensGreece

Personalised recommendations