Skip to main content
Log in

Gold Nanoparticles on Yttrium Modified Titania: Support Properties and Catalytic Activity

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of titanium oxide catalysts modified with yttrium has been prepared by sol–gel method and their structural properties have been studied. The incorporation of yttrium in the titania lattice favors the formation of oxygen vacancies while at low Y loadings the anatase structure is preserved. The catalytic activity of these solids for CO oxidation is found to be significantly dependent on their physical properties. In particular the amount of dopant controls the number of surface oxygen vacancies created as well as the gold particle size, which directly affects the catalytic activity. Also, a linear relationship between the catalytic activity and the band gap values, which depend on the Y loading, is observed. Density functional theory based calculations show that Y atoms are incorporated at the TiO2 surface at substitutional positions only, while the preferred oxygen vacancies arise by removing the bridge surface oxygen atoms. These O-vacancies are the preferential adsorption sites for Au atoms and nanoparticles, acting as nucleation centers that favor the dispersion of the catalyst active phase over the support surface. In agreement with experiment, Y doping is found to decrease the band gap of the support due to a destabilization of the valence band of the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  2. Meyer R, Lemire C, Shaikuthdinov SK, Freund HJ (2004) Gold Bull 37:72

    CAS  Google Scholar 

  3. Nijhuis TA, Weckhuysen BM (2006) Catal Today 117:84

    Article  CAS  Google Scholar 

  4. Thompson DT (2003) Appl Catal A 243:201

    Article  CAS  Google Scholar 

  5. Abad A, Almela C, Corma A, Garcìa H (2006) Tetrahedron 62:6666

    Article  CAS  Google Scholar 

  6. Jacobs G, Ricote S, Patterson PM, Graham UM, Dozier A, Khalid S, Rhodus E, Davis BH (2005) Appl Catal A 292:229

    Article  CAS  Google Scholar 

  7. Kim CH, Thompson LT (2005) J Catal 230:66

    Article  CAS  Google Scholar 

  8. Wang X, Rodrìguez JA, Hanson JC (2005) J Chem Phys 123:221101

    Article  CAS  Google Scholar 

  9. Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) J Catal 243:171

    Article  Google Scholar 

  10. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  11. Bond GC, Louis C, Thompson DT (2006) Cataysis by gold. Imperial College, London

    Book  Google Scholar 

  12. Centeno MA, Paulis M, Montes M, Odriozola JA (2002) Appl Catal A 234:65

    Article  CAS  Google Scholar 

  13. Centeno M, Portales C, Carrizosa I, Odriozola JA (2005) Catal Lett 102:289

    Article  CAS  Google Scholar 

  14. Carriazo JG, Martínez LM, Odriozola JA, Moreno S, Molina R, Centeno MA (2007) Appl Catal B 72:157

    Article  CAS  Google Scholar 

  15. Minicó S, Scire S, Crisafulli C, Visco AM, Galvagno S (1997) Catal Lett 47:273

    Article  Google Scholar 

  16. Pillai UR, Deevi S (2006) Appl Catal A 229:266

    Google Scholar 

  17. Arena F, Famulari P, Trunfio G, Bonura G, Frusteri F, Spadaro L (2006) Appl Catal B 66(1–2):81

    CAS  Google Scholar 

  18. Schubert M, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  19. Romero-Sarria F, Martínez LM, Centeno MA, Odriozola JA (2007) J Phys Chem C 111:14469

    Article  CAS  Google Scholar 

  20. Graciani J, Nambu A, Evans J, Rodríguez JA, Sanz JF (2008) J Am Chem Soc 130:12056

    Article  CAS  Google Scholar 

  21. Parker SC, Grant AW, Bondzie VA, Campbell CT (1999) Surf Sci 441:1–10

    Article  Google Scholar 

  22. Minato T, Susaki T, Shiraki S, Kato HS, Kawai M, Aika KI (2004) Proceedings of the 22nd European Conference on Surface Science, Prague, vol 566–568 (Part 2), p 1012

  23. Cruz N, Sanz JF, Rodríguez JA (2006) J Am Chem Soc 128:15600

    Article  Google Scholar 

  24. Wörz AS, Heiz U, Cinquini F, Pacchioni G (2005) J Phys Chem B 109:18418

    Article  Google Scholar 

  25. Liu Z, Cui ZL, Zhang K (2005) Mater Charact 54:123

    Article  CAS  Google Scholar 

  26. Panero WR, Stixrude L, Ewing RC (2004) Phys Rev B 70(5):054110

    Article  Google Scholar 

  27. Avellaneda RS (2010) Estudio e influencia del Y y otros modificadores superficiales en el comportamiento de catalizadores soportados en TiO2. Ph.D. thesis, Universidad de Sevilla, Sevilla, Spain

  28. Kresse G, Hafner J (1996) Phys Rev B 47:558

    Article  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  31. Blöchl PE (1994) Phys Rev B 50(24):17953

    Article  Google Scholar 

  32. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  33. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46(11):6671

    Article  CAS  Google Scholar 

  34. Harris J (1985) Phys Rev B 31(4):1770

    Article  CAS  Google Scholar 

  35. Diebold U (2003) Surf Sci Rep 48(5–8):53

    Article  CAS  Google Scholar 

  36. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B 63(15):155409

    Article  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188

    Article  Google Scholar 

  38. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354

    Article  Google Scholar 

  39. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899

    Article  CAS  Google Scholar 

  40. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  41. Malati MA, Wong WK (1984) Surf Technol 22:305

    Article  CAS  Google Scholar 

  42. Shcherbakova LG, Mamsurova LG, Sukhanova GE (1979) Russ Chem Rev 48:423

    Article  CAS  Google Scholar 

  43. Parks G (1965) Chem Rev 65:177

    Article  CAS  Google Scholar 

  44. Radecka M, Zakrzewska K, Wierzbicka M, Gorzkowska A, Komornicki S (2003) Solid State Ionics 157(1–4):379

    Article  CAS  Google Scholar 

  45. Serpone N (2006) J Phys Chem B 110(48):24287

    Article  CAS  Google Scholar 

  46. Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Chem Eur J 13:27–7771

    Article  Google Scholar 

  47. Centeno MA, Hidalgo MC, Domínguez MI, Navio JA, Odriozola JA (2008) Catal Lett 123:198

    Article  CAS  Google Scholar 

  48. Thomas AG, Flavell WR, Kumarasinghe AR, Mallick AK, Tsoutsou D, Smith GC, Stockbauer R, Patel S, Grätzel M, Hengerer R (2003) Phys Rev B 67(3):035110

    Article  Google Scholar 

  49. Gole JL, Prokes SM, Gelmbocki OJ (2008) J Phys Chem C 112:1782

    Article  CAS  Google Scholar 

  50. Lin J, Yu JC (1998) J Photochem Photobiol 116:63 (112)

    Google Scholar 

  51. Fischer J, Hollomon J, Leschen J (1950) Ind Eng Chem 44:6–1324

    Google Scholar 

  52. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219

    Article  CAS  Google Scholar 

  53. Oviedo J, San Miguel MA, Sanz JF (2004) J Chem Phys 121:7427

    Article  CAS  Google Scholar 

  54. Vittadini A, Selloni A (2002) J Chem Phys 117:353

    Article  CAS  Google Scholar 

  55. Graciani J, Álvarez LJ, Rodríguez JA, Sanz JF (2008) J Phys Chem C 112:2624

    Article  CAS  Google Scholar 

  56. Graciani J, Ortega Y, Sanz JF (2009) Chem Mater 21:1431

    Article  CAS  Google Scholar 

  57. Roldan A, Boronat M, Corma A, Illas Francesc (2010) J Phys Chem C 114:6511

    Article  CAS  Google Scholar 

  58. Carrettin S, Hao Y, Aguilar-Guerrero V, Gates BC, Trasobares S, Calvino JJ, Corma A (2007) Chem Eur J 13:7771

    Article  CAS  Google Scholar 

  59. Karvinen S (2003) Sol State Sci 5:811

    Article  CAS  Google Scholar 

  60. Cavalheiro AA, Bruno JC, Saeki MJ, Valente JPS, Florentino AO (2008) J Mater Sci 43:602

    Article  CAS  Google Scholar 

  61. Perdew JP, Levy M (1983) Phys Rev Lett 51:20–1884

    Article  Google Scholar 

  62. Sham LJ, Schlüter M (1983) Phys Rev Lett 51:20–1888

    Article  Google Scholar 

  63. Lany S, Zunger A (2008) Phys Rev B 78(23):235104

    Article  Google Scholar 

  64. Campbell C, Parker S, Starr D (2002) Sience 298:811

    CAS  Google Scholar 

  65. Molina LM, Hammer B (2003) Phys Rev Lett 90:20–206102

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministerio de Ciencia e Innovación, Spain, (grants ENE2009-14522-C05-01, MAT2008-04918 and CSD-00023, co-financed by FEDER from European Union), and the Junta de Andalucía (project P08-FQM-03661). Romero-Sarria thanks the Spanish MEC for her contract (Ramón y Cajal Programme). The Red Española de Supercomputación (RES-BSC) provided part of the computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fdez. Sanz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plata, J.J., Márquez, A.M., Sanz, J.F. et al. Gold Nanoparticles on Yttrium Modified Titania: Support Properties and Catalytic Activity. Top Catal 54, 219–228 (2011). https://doi.org/10.1007/s11244-011-9639-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9639-4

Keywords

Navigation