Skip to main content
Log in

Alternative Value Chains for Biomass Conversion to Chemicals

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Whereas biomass conversion is widely envisioned to proceed via platform molecules that are employed as building blocks to produce chemicals, an alternative value chain is proposed that proceeds via more direct and cost effective routes and do not duplicate chemicals currently produced from fossil resources. Biopolymers such as starch, cellulose and hemicellulose could be converted via one-pot catalytic process yielding either smaller molecules with similar functionalities such as polyols, or modified polymers with functional properties. These blend of molecules or modified biopolymers can be used without further separation for the manufacture of high tonnage end-products such as paper, paints, resins, foams, lubricants, plasticizers, etc., that do not require the use of isolated, pure molecules. The present paper aims at giving selected examples taken from recent work in our laboratory and from literature data to demonstrate the potential of this alternative value chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) In: Top value added chemicals from biomass, vol 1. US Department of Energy, DOE/GO-102004-1992

  2. Kamm B, Kamm M (2007) Adv Biochem Eng/Biotechnol 105:175

    Article  CAS  Google Scholar 

  3. Bozell JJ (2008) Clean 36:641

    CAS  Google Scholar 

  4. Glassner DA, Elankovan P, Beacom DR, Berglund KA (1995) Appl Biochem Biotechnol 51–52:73

    Article  Google Scholar 

  5. Zhao H, Holladay JE, Brown H, Zhang C (2007) Science 316:1597

    Article  CAS  Google Scholar 

  6. Binder JB, Raines RT (2009) J Am Chem Soc 131:1979

    Article  CAS  Google Scholar 

  7. Heinen AW, Peter JA, van Bekkum H (2001) Carbohydr Res 330:381

    Article  CAS  Google Scholar 

  8. European Project STARPOL FAIR CT95-0837. http://www.biomatnet.org

  9. Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Green Chem 2:89

    Article  CAS  Google Scholar 

  10. Haas T, Burkhardt O, Morawietz M, Vanheertum A, Bourrel A (1999) EP 915091 A2 19990512

  11. Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161

    Article  CAS  Google Scholar 

  12. Luo C, Wang S, Liu H (2007) Angew Chem Int Ed 46:7636

    Article  CAS  Google Scholar 

  13. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen G (2008) Angew Chem Int Ed 47:8510

    Article  CAS  Google Scholar 

  14. Jollet V, Chambon F, Rataboul F, Cabiac A, Pinel C, Guillon E, Essayem N (2009) Green Chem 11:2052

    Article  CAS  Google Scholar 

  15. Wang H, Chen HZ (2007) J Chin Inst Chem Eng 38:95

    Article  Google Scholar 

  16. Hadad C, Damez C, Bouquillon S, Estrine B, Hénin F, Muzart J, Pezron I, Komunjer L (2006) Carbohydr Res 34:1938

    Article  Google Scholar 

  17. Hölderich WF, Rios LA, Weckes PP, Schuster H (2004) J Synth Lubr 20:289

    Article  Google Scholar 

  18. Petrović ZS (2008) Polym Rev 48:109

    Article  Google Scholar 

  19. de Quadros JC Jr, de Carvalho JA (2009) US 20090149585

  20. Gedon S, Fengi R (2004) Kirk-Othmer encyclopedia of chemical technology, 5th edn, vol 5. p 412

  21. Majewicz TG, Podlas TJ (2004) Kirk-Othmer encyclopedia of chemical technology, 5th edn, vol 5. p 445

  22. Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358

    Article  CAS  Google Scholar 

  23. Roy D, Semsarilar M, Guthric JT, Perrier S (2009) Chem Soc Rev 38:1825

    Article  Google Scholar 

  24. Tomasik P, Schilling CH (2004) Adv Carbohydr Chem Biochem 59:175

    Article  CAS  Google Scholar 

  25. Hansen NML, Plackett D (2008) Biomacromolecules 9:1493

    Article  CAS  Google Scholar 

  26. Guilbert S, Morel M, Gontard N, Cuq B (2006) In: Bozell JJ, M.K. Patel MK (eds) Feedstocks for the future. Am Chem Soc, p 334

  27. Sorokin A, Kachkarova-Sorokina S, Gallezot P (2004) Chem Commun 2844

  28. Sorokin A, Kachkarova-Sorokina S, Gallezot P (2004) WO Patent 2004/007560 A1, to CNRS

  29. Gallezot P, Sorokin A (2008) In: Prunier ML (ed) Catalysis of organic reactions. CRC Press, Boca Raton, p 263

    Chapter  Google Scholar 

  30. Donzé C, Pinel C, Gallezot P, Taylor P (2002) Adv Synth Catal 344:906

    Article  Google Scholar 

  31. Mesnager J, Quettier C, Lambin A, Rataboul F, Pinel C (2010) ChemSusChem 2:1125

    Article  Google Scholar 

  32. Pinel C, Donzé C, Gallezot P (2003) Catal Commun 4:465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gallezot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallezot, P. Alternative Value Chains for Biomass Conversion to Chemicals. Top Catal 53, 1209–1213 (2010). https://doi.org/10.1007/s11244-010-9564-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9564-y

Keywords

Navigation