Skip to main content
Log in

Biodiesel Production Over Arenesulfonic Acid-Modified Mesostructured Catalysts: Optimization of Reaction Parameters Using Response Surface Methodology

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of different heterogeneous sulfonic acid-modified catalysts has been assayed in the simultaneous esterification of FFA and transesterification of triglycerides of crude palm oil (FFA content of 5.6 wt%) with methanol, demonstrating the applicability of this kind of acid solids to the one-step production of biodiesel from FFA-containing vegetable oils. The yield towards fatty acid methyl esters (FAMEs) obtained over these acid materials is enhanced when increasing the acid strength of the catalytic site. Likewise, the use of mesostructured supports has been shown as a factor improving the catalytic performance as compared with macroporous sulfonic acid-based resins, likely due to an enhancement of the mass transfer rates of large molecules, such as triglycerides, within the catalyst structure. Thus, the combination of the open mesoporous structure of a SBA-15 silica support with relatively strong arenesulfonic acid sites leads to a material able to yield high conversion of triglycerides and free fatty acids. Furthermore, a study on the transesterification reaction of crude palm oil with methanol through a surface response analysis has provided as optimal conditions the following: temperature 160 °C, catalyst loading 5.1 wt% referred to the amount of palm oil, and methanol to oil molar ratio 30. Under these conditions, almost 90% of the starting oil is converted to FAME after reacting for just 2 h of reaction. Likewise, surface response analysis has evidenced a strong interaction between temperature and methanol to oil ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Narasimharao K, Lee A, Wilson K (2007) J Biobased Mater Bioenergy 1:19

    Google Scholar 

  2. Demirbas A (2008) Energy Convers Manage 49:125

    Article  CAS  Google Scholar 

  3. Slinn M, Kendall K, Mallon C, Andrews J (2008) Bioresour Technol 99:5851

    Article  CAS  Google Scholar 

  4. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA (2005) Catal Today 106:190

    Article  CAS  Google Scholar 

  5. Vasudevan PT, Briggs M (2008) J Ind Microbiol Biotechnol 35:421

    Article  CAS  Google Scholar 

  6. di Serio M, Cozzolino M, Giordano M, Tesser R, Patrono P, Santacesaria E (2007) Ind Eng Chem Res 46:6379

    Article  CAS  Google Scholar 

  7. Ma F, Clements LD, Hanna MA (1998) Trans ASAE 41:1261

    CAS  Google Scholar 

  8. Marchetti JM, Miguel VU, Errazu AF (2007) Renew Sustain Energy Rev 11:1300

    Article  CAS  Google Scholar 

  9. Marchetti JM, Miguel VU, Errazu AF (2008) Fuel Process Technol 89:740

    Article  CAS  Google Scholar 

  10. Cao PG, Dube MA, Tremblay AY (2008) Biomass Bioenergy 32:1028

    Article  CAS  Google Scholar 

  11. Canoira L, Rodríguez-Gamero M, Querol E, Alcántara R, Lapuerta M, Oliva F (2008) Ind Eng Chem Res 47:7997

    Article  CAS  Google Scholar 

  12. Peng B-X, Shu Q, Wang J-F, Wang GR, Wang D-Z, Han M-H (2008) Process Saf Environ Prot 86:441

    Article  CAS  Google Scholar 

  13. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Ind Eng Chem Res 44:5353

    Article  CAS  Google Scholar 

  14. Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Appl Catal B 85:86

    Article  CAS  Google Scholar 

  15. López DE, Goodwin JG Jr, Bruce DA, Furuta S (2008) Appl Catal A 339:76

    Article  Google Scholar 

  16. Martins García C, Teixeira S, Ledo Marciniuk L, Schuchardt U (2008) Bioresour Technol 99:6608

    Article  Google Scholar 

  17. Chai F, Cao F, Zhai F, Chen Y, Wang X, Su Z (2007) Adv Synth Catal 349:1057

    Article  CAS  Google Scholar 

  18. Miao S, Shanks BH (2009) Appl Catal A 359:113

    Article  CAS  Google Scholar 

  19. Tesser R, di Serio M, Guida M, Nastasi M, Santacesaria E (2005) Ind Eng Chem Res 44:7978

    Article  CAS  Google Scholar 

  20. Mbaraka IK, McGuire KJ, Shanks BH (2006) Ind Eng Chem Res 45:3022

    Article  CAS  Google Scholar 

  21. Mo X, López DE, Suwannakarn K, Liu Y, Lotero E, Goodwin JG Jr, Lu C (2008) J Catal 254:332

    Article  CAS  Google Scholar 

  22. Melero JA, Bautista LF, Morales G, Iglesias J, Briones D (2009) Energy Fuels 23:539

    Article  CAS  Google Scholar 

  23. Brito A, Borges ME, Otero N (2007) Energy Fuels 21:3280

    Article  CAS  Google Scholar 

  24. Ison AP, MacRae AR, Smith CG, Bosley J (1994) Biotechnol Bioeng 43:122

    Article  CAS  Google Scholar 

  25. Chung K-H, Chang D-R, Park B-G (2008) Bioresour Technol 99:7438

    Article  CAS  Google Scholar 

  26. Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448

    Article  CAS  Google Scholar 

  27. Melero JA, Stucky GD, van Grieken R, Morales G (2002) J Mater Chem 12:1664

    Article  CAS  Google Scholar 

  28. Alvaro M, Corma A, Das D, Fornés V, García H (2005) J Catal 231:48

    Article  CAS  Google Scholar 

  29. Box GEP, Wilson KB, Stat JR (1951) Soc Ser B-Stat Meth 13:1

    Google Scholar 

  30. Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, New York

    Google Scholar 

  31. Pasias SA, Barakos NK, Papayannakos NG (2009) Ind Eng Chem Res 48:4266

    Article  CAS  Google Scholar 

  32. Pouilloux Y, Abro S, Vhove C, Barrault J (1999) J Mol Catal A 149:243

    Article  CAS  Google Scholar 

  33. Ni J, Meunier FC (2007) Appl Catal A 333:122

    Article  CAS  Google Scholar 

  34. Blanco-Brieva G, Campos-Martin JM, de Frutos MP, Fierro JLG (2008) Ind Eng Chem Res 47:8005

    Article  CAS  Google Scholar 

  35. Fu B, Gao L, Niu L, Wei R, Xiao G (2009) Energy Fuels 23:569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Ministerio de Ciencia e Innovación is kindly acknowledged (Project number: CTQ2008-01396/PPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Melero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melero, J.A., Bautista, L.F., Iglesias, J. et al. Biodiesel Production Over Arenesulfonic Acid-Modified Mesostructured Catalysts: Optimization of Reaction Parameters Using Response Surface Methodology. Top Catal 53, 795–804 (2010). https://doi.org/10.1007/s11244-010-9465-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9465-0

Keywords

Navigation