Skip to main content
Log in

Reaction Kinetics and Mechanisms for Hydrolysis and Transesterification of Triglycerides on Tungstated Zirconia

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrolysis and transesterification are two reactions which can occur during the synthesis of biodiesel. An Investigation of the mechanistic pathways in hydrolysis and transesterification were carried out at a relatively high temperature (100–130 °C) and moderate pressures (120–180 psi) with tricaprylin and water for hydrolysis or methanol for transesterification using a tungstated zirconia catalyst in a batch reactor. It was found that upon increasing the concentration of TCp, the reaction rates for both hydrolysis and transesterification increased at all conditions. In contrast, water inhibited the reaction rate of hydrolysis by poisoning the active sites. For transesterification, the apparent reaction order of methanol evolved from positive to negative as the concentration of methanol relative to TCp increased. Using a reaction model discrimination procedure, it was found that hydrolysis on WZ could be successfully described by an Eley–Rideal single site mechanism with adsorbed TCp reacting with bulk phase water. The mechanistic pathway for transesterification also seems to follow a similar mechanism, identical to the one previously proposed for transesterification on a solid acid catalyst (SiO2-supported Nafion-SAC-13) at lower temperature (60 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma FR, Hanna MA (1999) Bioresour Technol 70:1

    Article  CAS  Google Scholar 

  2. Van Gerpen J (2005) Fuel Process Technol 86:1097

    Article  Google Scholar 

  3. Canakci M, Sanli H (2008) J Ind Microbiol Biotechnol 35:431

    Article  CAS  Google Scholar 

  4. Canakci M, Van Gerpen J (2001) Trans Asae 44:1429

    CAS  Google Scholar 

  5. Canakci M, Van Gerpen J (2003) Trans Asae 46:945

    CAS  Google Scholar 

  6. Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Fuel 84:335

    Article  CAS  Google Scholar 

  7. Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2005) Ind Eng Chem Res 44:5353

    Article  CAS  Google Scholar 

  8. Lotero E, Goodwin JG Jr, Bruce D, Suwannakarn K, Liu Y, Lopez DE (2006) R Chem Soc Publ 19:41

    CAS  Google Scholar 

  9. Canakci M, Van Gerpen J (1999) Trans Asae 42:1203

    CAS  Google Scholar 

  10. Furuta S, Matsuhashi H, Arata K (2004) Catal Commun 5:721

    Article  CAS  Google Scholar 

  11. Suwannakarn K, Lotero E, Ngaosuwan K, Goodwin JG Jr (2009) Ind Eng Chem Res 48:2810

    Article  CAS  Google Scholar 

  12. Garcia CM, Teixeira S, Marciniuk LL, Schuchardt U (2008) Bioresour Technol 99:6608

    Article  CAS  Google Scholar 

  13. Lopez DE, Goodwin JG Jr, Bruce DA, Lotero E (2005) Appl Catal A 295:97

    Article  CAS  Google Scholar 

  14. Suwannakarn K, Lotero E, Goodwin JG Jr, Lu CQ (2008) J Catal 255:279

    Article  CAS  Google Scholar 

  15. Lopez DE, Goodwin JG Jr, Bruce DA (2007) J Catal 245:381

    Article  CAS  Google Scholar 

  16. Liu YJ, Lotero E, Goodwin JG Jr (2006) J Catal 243:221

    Article  CAS  Google Scholar 

  17. Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr (2007) J Catal 247:43

    Article  CAS  Google Scholar 

  18. Lopez DE, Suwannakarn K, Goodwin JG Jr, Bruce DA (2008) Ind Eng Chem Res 47:2221

    Article  CAS  Google Scholar 

  19. Lopez DE, Goodwin JG Jr, Bruce DA, Furuta S (2008) Appl Catal A 339:76

    Article  CAS  Google Scholar 

  20. Suwannakarn K, Lotero E, Goodwin JG Jr (2007) Catal Lett 114:122

    Article  CAS  Google Scholar 

  21. Furuta S, Matsuhashi H, Arata K (2006) Biomass Bioenergy 30:870

    Article  CAS  Google Scholar 

  22. Kusdiana D, Saka S (2004) Bioresour Technol 91:289

    Article  CAS  Google Scholar 

  23. Kusdiana D, Saka S (2004) Appl Biochem Biotechnol 113–116:781

    Article  Google Scholar 

  24. Moquin PHL, Temelli F, Sovova H, Saldana MDA (2006) J Supercrit Fluids 37:417

    Article  CAS  Google Scholar 

  25. Ngaosuwan K, Lotero E, Suwannakarn K, Goodwin JG Jr, Praserthdam P (2009) Ind Eng Chem Res 48:4757

    Article  CAS  Google Scholar 

  26. Yow CJ, Liew KY (1999) J Am Oil Chem Soc 76:529

    Article  CAS  Google Scholar 

  27. Bozek-Winkler E, Gmehling J (2006) Ind Eng Chem Res 45:6648

    Article  CAS  Google Scholar 

  28. Liu YJ, Lotero E, Goodwin JG Jr (2006) J Mol Catal A-Chem 245:132

    Article  CAS  Google Scholar 

  29. Boocock DGB, Konar SK, Mao V, Sidi H (1996) Biomass Bioenergy 11:43

    Article  CAS  Google Scholar 

  30. Boocock DGB, Konar SK, Mao V, Lee C, Buligan S (1998) J Am Oil Chem Soc 75:1167

    CAS  Google Scholar 

  31. Ngaosuwan K, Mo X, Goodwin JG Jr, Praserthdam P (2010) Appl Catal A (accepted)

  32. Liu YJ, Lotero E, Goodwin JG Jr, Lu CQ (2007) J Catal 246:428

    Article  CAS  Google Scholar 

  33. Patil TA, Butala DN, Raghunathan TS, Shankar HS (1988) Ind Eng Chem Res 27:727

    Article  CAS  Google Scholar 

  34. Freedman B, Butterfield RO, Pryde EH (1986) J Am Oil Chem Soc 63:1375

    Article  CAS  Google Scholar 

  35. Minami E, Saka S (2006) Fuel 85:2479

    Article  CAS  Google Scholar 

  36. Moquin PHL, Temelli F (2008) J Supercrit Fluids 45:94

    Article  CAS  Google Scholar 

  37. Mao V, Konar SK, Boocock DGB (2004) J Am Oil Chem Soc 81:803

    Article  CAS  Google Scholar 

  38. Li LS, Yoshinaga Y, Okuhara T (2002) Phys Chem Chem Phys 4:6129

    Article  CAS  Google Scholar 

  39. Macht J, Baertsch CD, May-Lozano M, Soled SL, Wang Y, Iglesia E (2004) J Catal 227:479

    Article  CAS  Google Scholar 

  40. Liu YJ, Lotero E, Goodwin JG Jr (2006) J Catal 242:278

    Article  CAS  Google Scholar 

  41. Meher LC, Sagar DV, Naik SN (2006) Renew Sustain Energy Rev 10:248

    Article  CAS  Google Scholar 

  42. Suwannakarn K, Lotero E, Goodwin JG Jr (2007) Ind Eng Chem Res 46:7050

    Article  CAS  Google Scholar 

  43. Martin GA (1988) Catal Rev Sci Eng 30:519

    Article  CAS  Google Scholar 

  44. Nijhuis TA, Beers AEW, Kapteijn F, Moulijn JA (2002) Chem Eng Sci 57:1627

    Article  CAS  Google Scholar 

  45. Bender ML (1960) Chem Rev 60:53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Commission on Higher Education of the Thai, Ministry of Education and by the Animal Co-Products Research & Education Center (ACREC) of Clemson University. The authors thank Magnesium Electron for providing the WZ catalysts. KN thanks Dr. Kaewta Suwannakarn for suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Goodwin Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngaosuwan, K., Mo, X., Goodwin, J.G. et al. Reaction Kinetics and Mechanisms for Hydrolysis and Transesterification of Triglycerides on Tungstated Zirconia. Top Catal 53, 783–794 (2010). https://doi.org/10.1007/s11244-010-9464-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-010-9464-1

Keywords

Navigation