A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool

Abstract

An advanced (micro) kinetic modeling tool is presented. It can be used in the assessment of chemical kinetics going from power law models to full microkinetic models in terms of elementary steps. Reactants and products are considered to be present in a single, ideal aggregation state. Rate equations are automatically generated from the reaction network as specified by the user of the engine. Combined stochastic and deterministic algorithms are used for the optimization procedure. The flexibility of the code in its integration with different graphical user-friendly interfaces is illustrated. Thus, researchers with little programming skills can both implement advanced micro-kinetic models and perform their assessment. O-xylene hydrogenation data are used for illustration purposes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

b :

Model parameter vector

C :

Concentration (mol kg−1)

F i :

Molar flow rate of component i (mol s−1)

k j :

Rate coefficient of elementary step j

K i :

Adsorption constant of component i (MPa−1)

n, m:

Reaction orders

Ox:

O-xylene

p i :

Partial pressure of component i (MPa)

R i :

Reaction rate of component i (mol kg−1 s−1)

S :

Objective function

W :

Catalyst mass (kg)

w p :

Weight applied to response p

References

  1. 1.

    Senkan S (2001) Angew Chem Int Ed 40:312

    Article  CAS  Google Scholar 

  2. 2.

    Caruthers JM, Lauterbach JA, Thomson KT, Venkatasubramanian V, Snively CM, Bhan A, Katare S, Oskarsdottir G (2003) J Catal 216:98

    Article  CAS  Google Scholar 

  3. 3.

    Schüth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T (2002) Top Catal 21:55

    Article  Google Scholar 

  4. 4.

    Morra G, Desmartin-Chomel A, Daniel C, Ravon U, Farrusseng D, Cowan R, Krusche M, Mirodatos C (2008) Chem Eng J 138:379

    Article  CAS  Google Scholar 

  5. 5.

    Pérez-Ramirez J, Berger RJ, Mul G, Kapteijn F, Moulijn JA (2000) Catal Today 60:93

    Article  Google Scholar 

  6. 6.

    Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA (2001) CATTECH 5(1):30

    Article  Google Scholar 

  7. 7.

    Zhang W, Fasolka MJ, Karim A, Amis EJ (2005) Meas Sci Technol 16:261

    Article  CAS  Google Scholar 

  8. 8.

    Saupe M, Födisch R, Sundermann A, Schunk SA, Finger KE (2004) QSAR Comb Sci 24:67

    Google Scholar 

  9. 9.

    Stoltze P (2000) Prog Surf Sci 65:65

    Article  CAS  Google Scholar 

  10. 10.

    Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. American Chemical Society, Washington, DC

    Google Scholar 

  11. 11.

    Sun J, Thybaut JW, Marin GB (2008) Catal Today 137(1):90

    Article  CAS  Google Scholar 

  12. 12.

    Netlib, http://www.netlib.org

  13. 13.

    Himmelblau DM (1970) Process analysis by statistical methods. Wiley, New York

    Google Scholar 

  14. 14.

    Park T-Y, Froment GF (1998) Comp Chem Eng 22:S103

    Article  CAS  Google Scholar 

  15. 15.

    Goldberg DE (1989) Genetic algorithms in search optimization, and machine learning. Addison-Wesley Pub. Co., Reading, MA

    Google Scholar 

  16. 16.

    Wolf D, Moros R (1997) Chem Eng Sci 52:1189

    Article  CAS  Google Scholar 

  17. 17.

    Carabineiro H, Pinheiro CIC, Lemos F, Ramôa Ribeiro F (2004) Chem Eng Sci 59:1221

    Article  CAS  Google Scholar 

  18. 18.

    Katare S, Bhan A, Caruthers JM, Delgass WN, Venkatasubramanian V (2004) Comp Chem Eng 28:2569

    Article  CAS  Google Scholar 

  19. 19.

    Carroll DL, http://cuaerospace.com/carroll/ga.html

  20. 20.

    Petroutsos E (2002) Mastering Visual Basic®.NET. SYBEX, Inc., Alamada, CA

  21. 21.

    Farrusseng D, Clerc F, Mirodatos C, Azam N, Gilardoni F, Thybaut JW, Balasubramaniam P, Marin GB (2007) Comb Chem High-Through Screen 10:85

    Article  CAS  Google Scholar 

  22. 22.

    Keane MK (1997) J Catal 166:347

    Article  CAS  Google Scholar 

  23. 23.

    Rahaman MV, Vannice MA (1991) J Catal 127:251

    Article  CAS  Google Scholar 

  24. 24.

    Neyestanaki AM, Mäki-Arvela P, Backman H, Karhu H, Salmi T, Väyrynen J, Murzin DY (2003) J Catal 218:267

    Article  Google Scholar 

  25. 25.

    Smeds S, Murzin D, Salmi T (1997) Appl Catal A: Gen 150:115

    Article  CAS  Google Scholar 

  26. 26.

    Backman H, Neyestanaki AK, Murzin DY (2005) J Catal 233:109

    Article  CAS  Google Scholar 

  27. 27.

    Saeys M, Reyniers M-F, Neurock M, Marin GB (2005) J Phys Chem B 109:2064

    Article  CAS  Google Scholar 

  28. 28.

    Lin SD, Vannice MA (1993) J Catal 143:563

    Article  CAS  Google Scholar 

  29. 29.

    Boudart M, Djéga-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton, NJ

    Google Scholar 

  30. 30.

    Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA (2001) J Catal 202:324

    Article  CAS  Google Scholar 

  31. 31.

    van Meerten RZC, Coenen JWE (1975) J Catal 37:37

    Article  Google Scholar 

  32. 32.

    Coughlan B, Keane MA (1991) Zeolites 11:12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed as part of TOPCOMBI, an EU integrated project (project no. 515792). We would like to thank InforSense Ltd. for providing the InforSense KDE software.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joris W. Thybaut.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Metaxas, K., Thybaut, J.W., Morra, G. et al. A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool. Top Catal 53, 64–76 (2010). https://doi.org/10.1007/s11244-009-9432-9

Download citation

Keywords

  • Microkinetic modeling
  • Catalyst design and optimization
  • O-xylene hydrogenation