Advertisement

Topics in Catalysis

, Volume 53, Issue 1–2, pp 64–76 | Cite as

A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool

  • Konstantinos Metaxas
  • Joris W. Thybaut
  • Guilhem Morra
  • David Farrusseng
  • Claude Mirodatos
  • Guy B. Marin
Original Paper

Abstract

An advanced (micro) kinetic modeling tool is presented. It can be used in the assessment of chemical kinetics going from power law models to full microkinetic models in terms of elementary steps. Reactants and products are considered to be present in a single, ideal aggregation state. Rate equations are automatically generated from the reaction network as specified by the user of the engine. Combined stochastic and deterministic algorithms are used for the optimization procedure. The flexibility of the code in its integration with different graphical user-friendly interfaces is illustrated. Thus, researchers with little programming skills can both implement advanced micro-kinetic models and perform their assessment. O-xylene hydrogenation data are used for illustration purposes.

Keywords

Microkinetic modeling Catalyst design and optimization O-xylene hydrogenation 

List of Symbols

b

Model parameter vector

C

Concentration (mol kg−1)

Fi

Molar flow rate of component i (mol s−1)

kj

Rate coefficient of elementary step j

Ki

Adsorption constant of component i (MPa−1)

n, m

Reaction orders

Ox

O-xylene

pi

Partial pressure of component i (MPa)

Ri

Reaction rate of component i (mol kg−1 s−1)

S

Objective function

W

Catalyst mass (kg)

wp

Weight applied to response p

Notes

Acknowledgements

This work was performed as part of TOPCOMBI, an EU integrated project (project no. 515792). We would like to thank InforSense Ltd. for providing the InforSense KDE software.

References

  1. 1.
    Senkan S (2001) Angew Chem Int Ed 40:312CrossRefGoogle Scholar
  2. 2.
    Caruthers JM, Lauterbach JA, Thomson KT, Venkatasubramanian V, Snively CM, Bhan A, Katare S, Oskarsdottir G (2003) J Catal 216:98CrossRefGoogle Scholar
  3. 3.
    Schüth F, Busch O, Hoffmann C, Johann T, Kiener C, Demuth D, Klein J, Schunk S, Strehlau W, Zech T (2002) Top Catal 21:55CrossRefGoogle Scholar
  4. 4.
    Morra G, Desmartin-Chomel A, Daniel C, Ravon U, Farrusseng D, Cowan R, Krusche M, Mirodatos C (2008) Chem Eng J 138:379CrossRefGoogle Scholar
  5. 5.
    Pérez-Ramirez J, Berger RJ, Mul G, Kapteijn F, Moulijn JA (2000) Catal Today 60:93CrossRefGoogle Scholar
  6. 6.
    Berger RJ, Stitt EH, Marin GB, Kapteijn F, Moulijn JA (2001) CATTECH 5(1):30CrossRefGoogle Scholar
  7. 7.
    Zhang W, Fasolka MJ, Karim A, Amis EJ (2005) Meas Sci Technol 16:261CrossRefGoogle Scholar
  8. 8.
    Saupe M, Födisch R, Sundermann A, Schunk SA, Finger KE (2004) QSAR Comb Sci 24:67Google Scholar
  9. 9.
    Stoltze P (2000) Prog Surf Sci 65:65CrossRefGoogle Scholar
  10. 10.
    Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (1993) The microkinetics of heterogeneous catalysis. American Chemical Society, Washington, DCGoogle Scholar
  11. 11.
    Sun J, Thybaut JW, Marin GB (2008) Catal Today 137(1):90CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Himmelblau DM (1970) Process analysis by statistical methods. Wiley, New YorkGoogle Scholar
  14. 14.
    Park T-Y, Froment GF (1998) Comp Chem Eng 22:S103CrossRefGoogle Scholar
  15. 15.
    Goldberg DE (1989) Genetic algorithms in search optimization, and machine learning. Addison-Wesley Pub. Co., Reading, MAGoogle Scholar
  16. 16.
    Wolf D, Moros R (1997) Chem Eng Sci 52:1189CrossRefGoogle Scholar
  17. 17.
    Carabineiro H, Pinheiro CIC, Lemos F, Ramôa Ribeiro F (2004) Chem Eng Sci 59:1221CrossRefGoogle Scholar
  18. 18.
    Katare S, Bhan A, Caruthers JM, Delgass WN, Venkatasubramanian V (2004) Comp Chem Eng 28:2569CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Petroutsos E (2002) Mastering Visual Basic®.NET. SYBEX, Inc., Alamada, CAGoogle Scholar
  21. 21.
    Farrusseng D, Clerc F, Mirodatos C, Azam N, Gilardoni F, Thybaut JW, Balasubramaniam P, Marin GB (2007) Comb Chem High-Through Screen 10:85CrossRefGoogle Scholar
  22. 22.
    Keane MK (1997) J Catal 166:347CrossRefGoogle Scholar
  23. 23.
    Rahaman MV, Vannice MA (1991) J Catal 127:251CrossRefGoogle Scholar
  24. 24.
    Neyestanaki AM, Mäki-Arvela P, Backman H, Karhu H, Salmi T, Väyrynen J, Murzin DY (2003) J Catal 218:267CrossRefGoogle Scholar
  25. 25.
    Smeds S, Murzin D, Salmi T (1997) Appl Catal A: Gen 150:115CrossRefGoogle Scholar
  26. 26.
    Backman H, Neyestanaki AK, Murzin DY (2005) J Catal 233:109CrossRefGoogle Scholar
  27. 27.
    Saeys M, Reyniers M-F, Neurock M, Marin GB (2005) J Phys Chem B 109:2064CrossRefGoogle Scholar
  28. 28.
    Lin SD, Vannice MA (1993) J Catal 143:563CrossRefGoogle Scholar
  29. 29.
    Boudart M, Djéga-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton, NJGoogle Scholar
  30. 30.
    Thybaut JW, Marin GB, Baron GV, Jacobs PA, Martens JA (2001) J Catal 202:324CrossRefGoogle Scholar
  31. 31.
    van Meerten RZC, Coenen JWE (1975) J Catal 37:37CrossRefGoogle Scholar
  32. 32.
    Coughlan B, Keane MA (1991) Zeolites 11:12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Konstantinos Metaxas
    • 1
  • Joris W. Thybaut
    • 1
  • Guilhem Morra
    • 2
    • 3
  • David Farrusseng
    • 2
  • Claude Mirodatos
    • 2
  • Guy B. Marin
    • 1
  1. 1.Laboratory for Chemical TechnologyGhent UniversityGhentBelgium
  2. 2.Institut de Recherches sur la Catalyse et l’Environnement de Lyon, UMR5256Villeurbanne cedexFrance
  3. 3.Johnson Matthey CatalystsBillinghamUK

Personalised recommendations