Topics in Catalysis

, 52:1746 | Cite as

Influence of Pt–Ba Proximity on NOx Storage–Reduction Mechanisms: A Space- and Time-Resolved In Situ Infrared Spectroscopic Study

Original Paper

Abstract

The influence of Pt–Ba proximity on the performance and mechanism of NOx storage–reduction (NSR) was investigated by a comparative study of Pt–Ba/CeO2, Pt/CeO2 and mechanically mixed Pt/CeO2–Ba/CeO2. NOx storage capacity, regeneration activity and selectivity to nitrogen and ammonia during periodic lean (NO + O2)–rich (H2) cycles were evaluated and the chemical gradients along the axial direction of the catalyst beds were monitored by space- and time-resolved in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The presence of Ba and its proximity to Pt greatly influenced the NSR process. In particular, the proximity was crucial to achieve better utilization of bulk Ba components as well as enhancing selectivity to N2. The space-resolved approach is shown to be a powerful tool to understand the impact of the proximity of Pt and Ba constituents on the final NSR performance.

Keywords

NOx storage–reduction Pt–Ba proximity Mechanically mixed catalyst In situ spectroscopy Space- and time-resolution 

References

  1. 1.
    Bögner W, Krämer M, Krutzsch B, Pischinger S, Voigtländer D, Wenninger G, Wirbeleit F, Brogan MS, Brisley RJ, Webster DE (1995) Appl Catal B 7:153CrossRefGoogle Scholar
  2. 2.
    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE (2004) Catal Rev Sci Eng 46:163CrossRefGoogle Scholar
  3. 3.
    Matsumoto SI (2004) Catal Today 90:183CrossRefGoogle Scholar
  4. 4.
    Lietti L, Nova I, Forzatti P (2008) J Catal 257:270CrossRefGoogle Scholar
  5. 5.
    Aftab K, Mandur J, Budman H, Currier NW, Yezerets A, Epling WS (2008) Catal Lett 125:229CrossRefGoogle Scholar
  6. 6.
    Urakawa A, Maeda N, Baiker A (2008) Angew Chem Int Ed 47:9256CrossRefGoogle Scholar
  7. 7.
    Roedel E, Urakawa A, Kureti S, Baiker A (2008) Phys Chem Chem Phys 10:6190CrossRefGoogle Scholar
  8. 8.
    Harima H (2006) Microelectron Eng 83:126CrossRefGoogle Scholar
  9. 9.
    Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) J Phys Chem B 105:6895CrossRefGoogle Scholar
  10. 10.
    Elizundia U, López-Fonseca R, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR (2007) Top Catal 42–43:37CrossRefGoogle Scholar
  11. 11.
    Jang BH, Yeon TH, Han HS, Park YK, Yie JE (2001) Catal Lett 77:21CrossRefGoogle Scholar
  12. 12.
    Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244CrossRefGoogle Scholar
  13. 13.
    Cant NW, Liu IOY, Patterson MJ (2006) J Catal 243:309CrossRefGoogle Scholar
  14. 14.
    Urakawa A, Baiker A, in preparationGoogle Scholar
  15. 15.
    Nova I, Lietti L, Forzatti P (2008) Catal Today 136:128CrossRefGoogle Scholar
  16. 16.
    Mulla SS, Chaugule SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2008) Catal Today 136:136CrossRefGoogle Scholar
  17. 17.
    Maeda N, Urakawa A, Baiker A, submitted for publicationGoogle Scholar
  18. 18.
    Ji Y, Choi J-S, Toops TJ, Crocker M, Naseri M (2008) Catal Today 136:146CrossRefGoogle Scholar
  19. 19.
    Ji YY, Toops TJ, Crocker M (2007) Catal Lett 119:257CrossRefGoogle Scholar
  20. 20.
    Desikusumastuti A, Staudt T, Grönbeck H, Libuda J (2008) J Catal 255:127CrossRefGoogle Scholar
  21. 21.
    Nova I, Castoldi L, Prinetto F, Dal Santo V, Lietti L, Tronconi E, Forzatti P, Ghiotti G, Psaro R, Recchia S (2004) Top Catal 30–31:181CrossRefGoogle Scholar
  22. 22.
    Cheol-Woo Y, Ja Hun K, Szanyi J (2007) J Phys Chem C 111:15299CrossRefGoogle Scholar
  23. 23.
    Kato R, Rolfe J (1967) J Chem Phys 47:1901CrossRefGoogle Scholar
  24. 24.
    Fanson PT, Horton MR, Delgass WN, Lauterbach J (2003) Appl Catal B 46:393CrossRefGoogle Scholar
  25. 25.
    Narayanamurti V, Seward WD, Pohl RO (1966) Phys Rev 148:481CrossRefGoogle Scholar
  26. 26.
    Taha S, Tosson M (1994) Thermochim Acta 236:217CrossRefGoogle Scholar
  27. 27.
    Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377CrossRefGoogle Scholar
  28. 28.
    Luo J-Y, Meng M, Li X-G, Zha Y-Q (2008) Micropor Mesopor Mater 113:277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Applied Biosciences, Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland

Personalised recommendations