Skip to main content
Log in

Mechanistic Investigation of Co Containing NO x Traps

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Co-containing NO x storage and reduction catalysts were investigated to identify the mechanism of Co promotion. X-ray diffraction and temperature programmed reduction demonstrated that Co exists in a highly oxidized state (Co3O4) and that the surface oxygen could be removed from the catalyst a typical operating conditions around 300 °C. Electron microscopy showed that Co is more uniformly distributed over the catalyst surface, as compared to Pt, with particle sizes ranging between 20 and 80 nm. In situ IR studies illustrated that NO x storage occurs on Co-containing NSR catalyst via formation of nitrites and nitrates as surface intermediates. Finally, it was found that, similar to Pt, the addition of Co to Ba catalysts enhances the nitrite to nitrate transition rate and also increases the overall formation of nitrates. Therefore, the promotional effect shown by Co is the result of the combination of increased NO to NO2 oxidation and improved surface area for NO2 spillover to the Ba storage sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York, p 193

  2. Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K (1996) Catal Today 27:63

    Article  CAS  Google Scholar 

  3. Matsumoto S (1996) Catal Today 29:43

    Article  CAS  Google Scholar 

  4. Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115

    Article  CAS  Google Scholar 

  5. Hirata H, Hachisuka I, Ikeda Y, Tsuji S, Matsumoto S (2001) Top Catal 16/17:145

    Article  CAS  Google Scholar 

  6. Li XG, Meng M, Lin PY, Fu YL, Hu TD, Xie YN, Zhang J (2003) Top Catal 22:111

    Article  Google Scholar 

  7. Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P (2002) Catal Today 75:431

    Article  CAS  Google Scholar 

  8. Bjorn Westerberg EF (2001) J Mol Catal A: Chem 165:249

    Article  Google Scholar 

  9. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 105:12732

    Article  CAS  Google Scholar 

  10. Lietti L, Forzatti P, Nova I, Tronconi E (2001) J Catal 204:175

    Article  CAS  Google Scholar 

  11. Anderson JA, Bachiller-Baeza B, Fernandez-Garcia M (2003) Phys Chem Chem Phys 5:4418

    Article  CAS  Google Scholar 

  12. James D, Fourre E, Ishii M, Bowker M (2003) Appl Catal B 45:147

    Article  CAS  Google Scholar 

  13. Castoldi L, Nova I, Lietti L, Forzatti P (2004) Catal Today 96:43

    Article  CAS  Google Scholar 

  14. Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196

    Article  CAS  Google Scholar 

  15. Salasc S, Skoglundh M, Fridell E (2002) Appl Catal B 36:145

    Article  CAS  Google Scholar 

  16. Scotti A, Nova I, Tronconi E, Castoldi L, Lietti L, Forzatti P (2004) Ind Eng Chem Res 43:4522

    Article  CAS  Google Scholar 

  17. Nova I, Castoldi L, Lietti L, Tronconi E, Forzatti P, Prinetto F, Ghiotti G (2004) J Catal 222:377

    Article  CAS  Google Scholar 

  18. Graham GW, Jen HW, Chun W, Sun HP, Pan XQ, McCabe RW (2004) Catal Lett 93:129

    Article  CAS  Google Scholar 

  19. Fanson PT, Horton MR, Delgass WN, Lauterbach J (2003) Appl Catal B 46:393

    Article  CAS  Google Scholar 

  20. Hendershot RJ, Fanson PT, Snively CM, Lauterbach J (2003) Angew Chem Int Ed 42:1152

    Article  CAS  Google Scholar 

  21. Hess C, Lunsford JH (2002) J Phys Chem B 106:6358

    Article  CAS  Google Scholar 

  22. Hess C, Lunsford JH (2003) J Phys Chem B 107:1982

    Article  CAS  Google Scholar 

  23. Han P-H, Lee Y-K, Han S-M, Rhee H-K (2001) Top Catal 16/17:165

    Article  CAS  Google Scholar 

  24. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433

    Article  CAS  Google Scholar 

  25. Huang HY, Long RQ, Yang RT (2001) Appl Catal B 33:127

    Article  CAS  Google Scholar 

  26. Yamazaki K, Suzuki T, Takahashi N, Yokota K, Suguira M (2001) Appl Catal B 30:459

    Article  CAS  Google Scholar 

  27. Vijay R, Hendershot RJ, Rivera-Jiménez SM, Rogers WB, Feist BJ, Snively CM, Lauterbach J (2005) Catal Commun 6:167

    Article  CAS  Google Scholar 

  28. Vijay R, Snively CM, Lauterbach J (2006) J Catal 243:368

    Article  CAS  Google Scholar 

  29. Hendershot RJ, Rogers WB, Snively CM, Ogunnaike BA, Lauterbach J (2004) Catal Today 98:375

    Article  CAS  Google Scholar 

  30. Hendershot RJ (2004) Statitically guided high-throughput experimentation of NOx storage and reduction. Doctoral thesis, University of Delaware, p 57

  31. Fanson PT (2002) FTIR analysis of supported catalyst systems related to the reduction of automotive exhaust emissions. Doctoral thesis, Purdue University-West Lafayette, p 21

  32. Kantcheva M, Vakkasoglu AS (2004) J Catal 223:352

    Article  CAS  Google Scholar 

  33. Jansson J (2000) J Catal 194:55

    Article  CAS  Google Scholar 

  34. Jansson J, Palmqvist AEC, Fridell E, Skoglundh M, Österlund L, Thormählen P, Langer V (2002) J Catal 211:387

    CAS  Google Scholar 

  35. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175

    Article  CAS  Google Scholar 

  36. Yao Y-FY (1974) J Catal 33:108

    Article  CAS  Google Scholar 

  37. Mergler YJ, Aalst Av, Delft Jv, Nieuwenhuys BE (1996) Appl Catal B 10:245

    Article  CAS  Google Scholar 

  38. Lin P-Y, Skoglundh M, Löwendahl L, Otterstedt J-E, Dahl L, Jansson K, Nygren M (1995) Appl Catal B 6:237

    Article  CAS  Google Scholar 

  39. Thormählen P, Skoglundh M, Fridell E, Andersson B (1999) J Catal 188:300

    Article  Google Scholar 

  40. Arnoldy P, Moulijn JA (1985) J Catal 93:38

    Article  CAS  Google Scholar 

  41. Jansson J, Skoglundh M, Fridell E, Thormählen P (2001) Top Catal 16/17:385

    Article  CAS  Google Scholar 

  42. Chuang TJ, Brundle CR, Rice DW (1976) Surf Sci 59:413

    Article  CAS  Google Scholar 

  43. Epling WS, Campbell LE, Yezerets A, Currier NC, Parks JE (2004) Catal Rev 46:163

  44. Huang HY, Long RQ, Yang RT (2001) Energy Fuels 15:205

    Article  CAS  Google Scholar 

  45. Abdulhamid H, Fridell E, Skoglundh M (2006) Appl Catal B 62:319

    Article  CAS  Google Scholar 

  46. Su Y, Amiridis MD (2004) Catal Today 96:31

    Article  CAS  Google Scholar 

  47. Hendershot RJ, Vijay R, Snively CM, Lauterbach J (2006) Appl Catal B 70:160

    Article  Google Scholar 

  48. Olsson L, Fridell E, Skoglundh M, Andersson B (2002) Catal Today 73:263

    Article  CAS  Google Scholar 

  49. Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) J Phys Chem B 105:6895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Lauterbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijay, R., Sakurai, H., Snively, C.M. et al. Mechanistic Investigation of Co Containing NO x Traps. Top Catal 52, 1388–1399 (2009). https://doi.org/10.1007/s11244-009-9323-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9323-0

Keywords

Navigation