Skip to main content
Log in

Studies of the Kinetics of Reaction Between Iron Catalysts and Ammonia—Nitriding of Nanocrystalline Iron with Parallel Catalytic Ammonia Decomposition

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Analysis of two parallel chemical reactions was performed using a flow differential tubular reactor with thermogravimetric measurement and analysis of the gas phase composition. The nitriding rate of the iron ammonia synthesis catalyst and the ammonia decomposition rate were investigated at 350–550 °C. Various gas-phase nitriding potentials were applied. Phase composition was analysed by X-ray diffraction. From a comparison with Lehrer diagram, the critical nitriding potentials for nanoiron were found to be higher than that for bulk materials. The rates of nitriding and ammonia decomposition on iron and various nitrides were determined. Ammonia decomposition was the most rapid on α-Fe and the slowest on γ′-Fe4N. Results were interpreted on the basis of the adsorption range model and values of kinetics and thermodynamic parameters were assessed. A new method for the determination of crystallite mass distribution, using the results of iron catalyst nitriding process rate measurements, was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Kunze J (1990) Nitrogen and carbon in iron and steel—thermodynamics; physical research, vol 16. Akademie Verlag, Berlin

    Google Scholar 

  2. Lehrer E (1930) Z Elektrochem 36(6):383–392

    CAS  Google Scholar 

  3. Grabke HJ (1969) Ber Bunsenges Phys Chem 73(6):596–601

    CAS  Google Scholar 

  4. Brunauer S, Jefferson ME, Emmett PH, Hendricks SB (1931) J Am Chem Soc 53:1778–1786

    Article  Google Scholar 

  5. Kooi BJ, Somers MAJ, Mittemeijer EJ (1996) Metall and Mater Trans A 27:1071

    Google Scholar 

  6. Arabczyk W, Wróbel R (2003) Solid State Phenom 94:235–238

    Article  CAS  Google Scholar 

  7. Kowalczyk Z (1996) Catal Lett 37:173

    Article  CAS  Google Scholar 

  8. Arabczyk W, Kałucki K (1993) New frontiers in catalysis. In: Guczi L (ed) Proceedings of the 10th international congress on catalysis. Elsevier, Amsterdam, p 2539

    Chapter  Google Scholar 

  9. Arabczyk W, Narkiewicz U, Kałucki K (1994) Vacuum 45:267

    Article  CAS  Google Scholar 

  10. Arabczyk W, Narkiewicz U, Moszyński D (1995) A double layer model of fused iron catalyst for ammonia synthesis. Langmuir 14:5785

    Google Scholar 

  11. Arabczyk W, Narkiewicz U, Moszyński D (1999) Double-layer model of the fused iron catalyst for ammonia synthesis. Langmuir 15(18):5785

    Article  CAS  Google Scholar 

  12. Seth BBL, Ross HU (1965) Trans Metall Soc 233:180–185

    CAS  Google Scholar 

  13. Park JY, Levenspiel O (1975) Chem Eng Sci 30:1207–1214

    Article  CAS  Google Scholar 

  14. Arabczyk W, Wróbel R (2003) Solid State Phenom 94:185–188

    Article  CAS  Google Scholar 

  15. Wróbel R, Arabczyk W (2006) J Phys Chem A 110(29):9219–9224

    Article  Google Scholar 

  16. Langmuir IJ (1918) Am Chem Soc 40:1361

    Article  CAS  Google Scholar 

  17. Benard J (1983) Stud Surf Sci Catal 13:261

    Google Scholar 

  18. Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, Cambridge, p 429

    Google Scholar 

  19. Schloegl R (1991) In: Jennings JR (ed) Catalytic ammonia synthesis. Plenum Press, New York

    Google Scholar 

  20. Ertl G, Lee SB (1982) Surf Sci 114:527

    Article  CAS  Google Scholar 

  21. Ertl G (1991) In: Jennings JR (ed) Catalytic ammonia synthesis, fundamental and practice. Plenum Press, New York

    Google Scholar 

  22. Ertl G (1998) In: Inui T (ed) Successful design of catalysts. Elsevier, Amsterdam

    Google Scholar 

  23. Wohlschlögel M, Welzel U, Mittemeijer EJ (2007) Appl Phys Lett 91:141901

    Article  Google Scholar 

  24. Temkin MI (1940) J Phys Chem USSR 14:1241

    CAS  Google Scholar 

  25. Moszyńska I, Moszyński D, Arabczyk W, Nitriding of nanocrystalline iron and reduction of iron nitrides—hysteresis phenomenon (to be published)

  26. Grabke HJZ (1976) Phys Chem N F 100:185

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pelka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelka, R., Arabczyk, W. Studies of the Kinetics of Reaction Between Iron Catalysts and Ammonia—Nitriding of Nanocrystalline Iron with Parallel Catalytic Ammonia Decomposition. Top Catal 52, 1506–1516 (2009). https://doi.org/10.1007/s11244-009-9297-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9297-y

Keywords

Navigation