Skip to main content
Log in

Fine Control of Nitrogen Content in N-doped Titania Photocatalysts Prepared from Layered Titania/Isostearate Nanocomposites for High Visible-Light Photocatalytic Activity

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this contribution, high photocatalytic activity under visible-light irradiation realized by means of the fine control of the nitrogen content in doped titania photocatalysts is reported. The photocatalyst samples were prepared from a layered titania/isostearate nanocomposite as precursor, and the fine control of nitrogen content was achieved by the adjustment of the amount of hybridized isostearate in the nanocomposite, preserving the crystallinity and specific surface area of the final samples. Photocatalytic activity under the UV-light irradiation (290 and 350 nm) decreases with nitrogen content. Under visible-light irradiation (470 nm), a maximum value of photocatalytic activity was observed at [N]/[Ti] = 0.0145, whereas the absorbance in the visible-light region increases with nitrogen content. Fine control of the doped-nitrogen content provides a possible route to achieving high visible-light photocatalytic activity where the maximum value of the apparent quantum yield under 470 nm light irradiation exceeds 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis. Bkc Inc, Tokyo, Japan

    Google Scholar 

  2. Hagfeldt A, Grätzel M (2000) Acc Chem Res 33:269

    Article  CAS  Google Scholar 

  3. Sato S (1986) Chem Phys Lett 123:126

    Article  CAS  Google Scholar 

  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  5. Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, Granqvist CG, Lindquist SE (2003) J Phys Chem B 107:5709

    Article  CAS  Google Scholar 

  6. Nakano Y, Morikawa T, Ohwaki T, Taga Y (2005) Appl Phys Lett 86:3

    Article  Google Scholar 

  7. Suda Y, Kawasaki H, Ueda T, Ohshima T (2004) Thin Solid Films 453–454:162

    Article  Google Scholar 

  8. Irie H, Washizuka S, Yoshino N, Hashimoto K (2003) Chem Commun 1298

  9. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483

    Article  CAS  Google Scholar 

  10. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Jap J App Phys Part 2 Lett 40:561

    Article  Google Scholar 

  11. Burda C, Lou YB, Chen XB, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049

    Article  CAS  Google Scholar 

  12. Chen XB, Burda C (2004) J Phys Chem B 108:15446

    Article  CAS  Google Scholar 

  13. Drygas M, Czosnek C, Paine RT, Janik JF (2006) Chem Mater 18:3122

    Article  CAS  Google Scholar 

  14. Gole JL, Stout JD, Burda C, Lou YB, Chen XB (2004) J Phys Chem B 108:1230

    Article  CAS  Google Scholar 

  15. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B Environ 42:403

    Article  CAS  Google Scholar 

  16. Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Ishihara S, Takasu Y, Murakami Y (2007) Catal Today 120:226

    Article  CAS  Google Scholar 

  17. Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Takasu Y, Murakami Y (2004) Chem Lett 33:1508

    Article  CAS  Google Scholar 

  18. Nosaka Y, Matsushita M, Nishino J, Nosaka AY (2005) Sci Technol Adv Mater 6:143

    Article  CAS  Google Scholar 

  19. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349

    Article  CAS  Google Scholar 

  20. Wang ZP, Cai WM, Hong XT, Zhao XL, Xu F, Cai CG (2005) Appl Catal B Environ 57:223

    Article  CAS  Google Scholar 

  21. Augustynski J (1993) Electrochim Acta 38:43

    Article  CAS  Google Scholar 

  22. Bickley RI, Gonzalezcarreno T, Lees JS, Palmisano L, Tilley RJD (1991) J Solid State Chem 92:178

    Article  CAS  Google Scholar 

  23. Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Masaki S, Imai T, Sugimoto W, Takasu Y, Murakami Y (2005) J Mater Res 20:1308

    Article  CAS  Google Scholar 

  24. Matsumoto T, Murakami Y, Takasu Y (2000) J Phys Chem B 104:1916

    Article  CAS  Google Scholar 

  25. Murakami Y, Matsumoto T, Takasu Y (1999) J Phys Chem B 103:1836

    Article  CAS  Google Scholar 

  26. Yan XL, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Chem Phys Lett 429:606

    Article  CAS  Google Scholar 

  27. Ramis GG, Busca G, Lorenzelli V, Forzatti P (1990) Appl Catal 64:243

    Article  CAS  Google Scholar 

  28. Tsyganenko AA, Pozdnyakov DV, Filimonov VN (1975) J Mol Struct 29:299

    Article  CAS  Google Scholar 

  29. Saha NC, Tompkins HG (1992) J Appl Phys 72:3072

    Article  CAS  Google Scholar 

  30. Qiu XF, Burda C (2007) Chem Phys 339:1

    Article  CAS  Google Scholar 

  31. Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A Gen 265:115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taki Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T., Hashimoto, Y., Sakai, M. et al. Fine Control of Nitrogen Content in N-doped Titania Photocatalysts Prepared from Layered Titania/Isostearate Nanocomposites for High Visible-Light Photocatalytic Activity. Top Catal 52, 1584–1591 (2009). https://doi.org/10.1007/s11244-009-9285-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9285-2

Keywords

Navigation