Topics in Catalysis

, Volume 52, Issue 9, pp 1242–1250 | Cite as

A Novel Catalyst Type Containing Noble Metal Nanoparticles Supported on Mesoporous Carbon: Synthesis, Characterization and Catalytic Properties

  • Endre Horváth
  • Róbert Puskás
  • Róbert Rémiás
  • Melinda Mohl
  • Ákos Kukovecz
  • Zoltán Kónya
  • Imre Kiricsi
Original Paper


We report on a method for the controlled synthesis of a new type of high specific surface area mesoporous carbons denoted as the CMH family. By using mixtures of colloidal silica particles as templates it was possible to synthesize samples exhibiting 1,630 m2 g−1 specific surface area and 4.37 cm3 g−1 pore volume. CMH materials exhibit high thermal stability in oxygen and can be used as catalyst supports. This function was demonstrated by synthesizing Pt/CMH and Rh/CMH catalysts and testing them in the hydrogenation of cyclohexene. We have found Pt/CMH to be more stable and easier to regenerate than Rh/CMH.


Metal nanoparticles Mesoporous carbons Catalytic hydrogenation 



The authors gratefully thank Prof. Gabor A. Somorjai’s helpful discussion and comments. This work was supported by the Hungarian Research Fund OTKA K73676 and the FP6 STREP “SANES” (017310).


  1. 1.
    McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology. Royal Society of Chemistry, CambridgeGoogle Scholar
  2. 2.
    Robson H, Lillerud KP (2001) In: Robson H (ed) Verified syntheses of zeolitic materials. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Jacobs PA, Martens JA (1987) Zeolites: synthesis of high-silica aluminosilicate zeolites. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Kiricsi I, Fudala Á, Méhn D, Kukovecz Á, Kónya Z, Hodos M, Horváth E, Urbán M, Kanyó T, Molnár É, Smajda R (2006) Curr Appl Phys 6:212CrossRefGoogle Scholar
  5. 5.
    Jacobs PA (1977) Carboniogenic activity of zeolites. Elsevier, LeuvenGoogle Scholar
  6. 6.
    Sosa RC, Parton RF, Neys PE, Lardinois O, Jacobs PA, Rouxhet PG (1996) J Mol Catal A 110:141CrossRefGoogle Scholar
  7. 7.
    Parton RF, Neys PE, Jacobs PA, Sosa RC, Rouxhet PG (1996) J Catal 164:341CrossRefGoogle Scholar
  8. 8.
    Kónya Z, Puntes VF, Kiricsi I, Zhu J, Alivisatos AP, Somorjai GA (2002) Catal Lett 81:137CrossRefGoogle Scholar
  9. 9.
    Zhu J, Kónya Z, Puntes VF, Kiricsi I, Alivisatos AP, Somorjai GA (2003) Langmuir 19:4396CrossRefGoogle Scholar
  10. 10.
    Kónya Z, Puntes VF, Kiricsi I, Zhu J, Alivisatos AP, Somorjai GA (2002) Nano Lett 2:907CrossRefGoogle Scholar
  11. 11.
    Kónya Z, Puntes VF, Kiricsi I, Zhu J, Ager JW, Ko MK, Frei H, Alivisatos P, Somorjai GA (2003) Chem Mater 15:1242CrossRefGoogle Scholar
  12. 12.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743CrossRefGoogle Scholar
  13. 13.
    Kang S, Yu J-S, Kruk M, Jaroniec M (2002) Chem Commun 1670Google Scholar
  14. 14.
    Xia Y, Yang Z, Mokaya R (2004) J Phys Chem B 108:19293CrossRefGoogle Scholar
  15. 15.
    Urbán M, Méhn D, Kónya Z, Kiricsi I (2002) Chem Phys Lett 359:95CrossRefGoogle Scholar
  16. 16.
    Wang N, Tang ZK, Li GD, Chen JS (2000) Nature 408:50CrossRefGoogle Scholar
  17. 17.
    Han S, Hyeon T (1999) Chem Commun 1955Google Scholar
  18. 18.
    Parmentier J, Vix-Guterl C, Gibot P, Reda M, Ilescu M, Werckmann J, Patarin J (2003) Micropor Mesopor Mater 62:87CrossRefGoogle Scholar
  19. 19.
    Lo AY, Huang SJ, Chen WH, Peng YR, Kuo CT, Liu SB (2006) Thin Solid Films 498:193CrossRefGoogle Scholar
  20. 20.
    Xia Y, Mokaya R (2004) Adv Mater 16:886CrossRefGoogle Scholar
  21. 21.
    Vinu A, Srinivasu P, Takahashi M, Mori T, Balasubramanian VV, Ariga K (2007) Micropor Mesopor Mater 100:20CrossRefGoogle Scholar
  22. 22.
    Chen L, Singh RK, Webley P (2007) Micropor Mesopor Mater 102:159CrossRefGoogle Scholar
  23. 23.
    Ren J, Ding J, Chan K-Y, Wang H (2007) Chem Mater 19:2786CrossRefGoogle Scholar
  24. 24.
    Fuertes AB (2004) Chem Mater 16:449CrossRefGoogle Scholar
  25. 25.
    Gierszal KP, Jaroniec M (2006) J Am Chem Soc 128:10026CrossRefGoogle Scholar
  26. 26.
    Yu J-S, Kang S, Yoon SB, Chai G (2002) J Am Chem Soc 124:9382CrossRefGoogle Scholar
  27. 27.
    Han S, Sohn K, Hyeon T (2000) Chem Mater 12:3337CrossRefGoogle Scholar
  28. 28.
    Hoefelmeyer JD, Niesz K, Somorjai GA, Tilley TD (2005) Nano Lett 5:435CrossRefGoogle Scholar
  29. 29.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  30. 30.
    Barett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  31. 31.
    Čížek Z, Borek P, Fiala J, Bogdain B (1990) Microchim Acta III:163Google Scholar
  32. 32.
    Terrones M, Hsu WK, Kroto HW, Walton DRM (1998) Top Curr Chem 199:189CrossRefGoogle Scholar
  33. 33.
    Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Nano Lett 2:615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Endre Horváth
    • 1
  • Róbert Puskás
    • 1
  • Róbert Rémiás
    • 1
  • Melinda Mohl
    • 1
  • Ákos Kukovecz
    • 1
  • Zoltán Kónya
    • 1
  • Imre Kiricsi
    • 1
  1. 1.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations