Topics in Catalysis

, Volume 52, Issue 9, pp 1232–1241 | Cite as

Reorganization of Wells–Dawson Heteropoly Compounds During the Oxygen Assisted Catalytic Reaction of 2-butanol: Effect of the Oxido-Reduction Strength of the Working Conditions

  • E. Arendt
  • E. Charlier
  • E. M. Gaigneaux
Original Paper


The reorganization of a Wells–Dawson heteropoly compound during the oxygen assisted catalytic reaction of 2-butanol appears to be dictated by the oxido-reduction strength of the working conditions. Indeed, the oxido-reduction strength is a tool to smoothly induce the rearrangement of the Wells–Dawson compound and to stabilize a particular intermediate species, formed in situ, with most desired enhanced performances in selective oxidation processes. It thus appears clearly that the O2:2-butanol ratio of 5 allows to keep the selectivity in methyl-ethyl-ketone stable with time-on-stream. This feed seems to be a good compromise compared both to more reducing or oxidizing working conditions.


Wells–Dawson heteropoly compound Dehydration and oxidation of 2-butanol Rearrangement 



E.A. thanks the Université catholique de Louvain for the financial support and the teaching assistant—PhD student position. The authors wish to thank the ‘Fonds National de la Recherche Scientifique’ (Belgium) for the acquisition of the XPS equipment. The involvement of Unité de catalyse et de chimie des matériaux divisés in the ‘Inanomat’ IUAP network sustained by the ‘Service public fédéral de programmation politique scientifique’ (Belgium) is also acknowledged. The Unité de catalyse et chimie des matériaux divisés is also involved in the ‘FAME’ Network of Excellence of the EU 6th FP, and in the Cost Action D41 sustained by the European Science Foundation.


  1. 1.
    Pope M (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    Valle GM, Briand LE (2003) Mater Lett 57:3964CrossRefGoogle Scholar
  3. 3.
    Okuhara T, Mizuno N, Misono M (1996) Catalysis 41:113Google Scholar
  4. 4.
    Centi G, Cavani F, Trifirò F (2000) In: Selective oxidation by heterogeneous catalysis, chap. 6. Kluwer Academic/Pleunum PublishersGoogle Scholar
  5. 5.
    Comuzzi C, Dolcetti G, Trovarelli A, Cavani F, Trifirò F, Llorca J, Finke RG (1996) Catal Lett 36:75CrossRefGoogle Scholar
  6. 6.
    Misono M (1987) Catal Rev Sci Eng 29:269CrossRefGoogle Scholar
  7. 7.
    Varisli D, Dogu T, Dogu G (2007) Chem Eng Sci 62:5349CrossRefGoogle Scholar
  8. 8.
    Wijesekera TP, Lyons JE, Ellis PE (2000) Wells–Dawson type heteropolyacids, their preparation and use as oxidation catalysts. Patent, World Patent No. 009262Google Scholar
  9. 9.
    Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) Appl Catal A 319:14CrossRefGoogle Scholar
  10. 10.
    Predoeva A, Damyanova S, Gaigneaux EM, Petrov L (2007) Catal Today 128:208CrossRefGoogle Scholar
  11. 11.
    Hu J, Burns RC, Guerbois J-P, Mol J (2000) Catal A Chem 152:41Google Scholar
  12. 12.
    Cavani F (1998) Catal Today 41:73CrossRefGoogle Scholar
  13. 13.
    Na K, Iizaki T, Okuhara T, Misono M (1996) A molecular view of heterogeneous catalysis. De Boeck University, Brussels, p 133Google Scholar
  14. 14.
    Kozhevnikov IV (1998) Chem Rev 98:171CrossRefGoogle Scholar
  15. 15.
    Kozhevnikov IV (1995) Catal Rev Sci Eng 37:311CrossRefGoogle Scholar
  16. 16.
    Mestl G, Ilkenhans T, Spielbauer D, Dieterle M, Timpe O, Krohnert J, Jentoft F, Knozinger H, Schlogl R (2001) Appl Catal A Gen 210:13CrossRefGoogle Scholar
  17. 17.
    Arendt E, McEvoy KM, Gaigneaux EM (2009) Appl Catal A Gen 357:115CrossRefGoogle Scholar
  18. 18.
    Bertinchamps F, Gaigneaux EM (2004) Catal Today 91 and 92:105Google Scholar
  19. 19.
    McEvoy K (2007) Master’s thesis, Univ. Cath. LouvainGoogle Scholar
  20. 20.
    Wu H (1920) J Biol Chem 43:189Google Scholar
  21. 21.
    Moulder JF, Stickel W, Sobol P, Bomben K (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy, PerkinElmer Corporation, Eden Prairie, MNGoogle Scholar
  22. 22.
    Briand LE, Valle GM, Thomas HJ (2002) J Mater Chem 12:299CrossRefGoogle Scholar
  23. 23.
    Gambaro LA, Briand LE, Valle GM, Matkovic SR (2007) In: Catalyst preparation—science and engineering. CRC PressGoogle Scholar
  24. 24.
    Rocchiccioli-Deltcheff C, Aouissi A, Bettahar MM, Launay S, Fournier M (1996) J Catal 164:16CrossRefGoogle Scholar
  25. 25.
    Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207CrossRefGoogle Scholar
  26. 26.
    Sultan M, Paul S, Fournier M, Vanhove D (2004) Appl Catal A Gen 259:141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Unité de catalyse et chimie des matériaux divisésLouvain-la-NeuveBelgium

Personalised recommendations