Topics in Catalysis

, Volume 52, Issue 9, pp 1272–1280 | Cite as

Catalytic Activities of Alcohol Transformations Over 8-Ring Zeolites

  • Qingjun Zhu
  • Junko N. Kondo
  • Satoshi Inagaki
  • Takashi TatsumiEmail author
Original Paper


Aluminosilicate H/CHA and H/MTF zeolites show remarkably different catalytic activities in the methanol and ethanol transformations although they have similar pore size of 8-membered ring structures. Moreover, the produced ethylene is further converted on H/CHA, but H/MTF is not active for the ethylene transformation. The correlations between the distinct catalytic differences and their intrinsic structural properties, including topology and acidity, are discussed.


Methanol to olefin Ethanol dehydration Brønsted acidity 8-Membered ring zeolite 



The financial funding from Mitsubishi Chemical Company (MCC) is gratefully acknowledged.


  1. 1.
    Zones SI (1985) US Patent, 4 544 538Google Scholar
  2. 2.
    Rubin MK (1991) US Patent, 4 981 663Google Scholar
  3. 3.
    Barrett PA, Diaz-Cabanas M-J, Gamblor MA (1999) Chem Mater 11:2919CrossRefGoogle Scholar
  4. 4.
    Plévert J, Yamamoto K, Chiari G, Tatsumi T (1999) J Phys Chem B 103:8647CrossRefGoogle Scholar
  5. 5.
    Stöcker M (1999) Microporous Mesoporous Mater 29:3CrossRefGoogle Scholar
  6. 6.
    Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514CrossRefGoogle Scholar
  7. 7.
    Takahara I, Saito M, Inaba M, Murata K (2005) Catal Lett 105:249CrossRefGoogle Scholar
  8. 8.
    Oikawa H, Shibata Y, Inazu K, Iwase Y, Murai K, Kyodo S, Kobayashi G, Baba T (2006) Appl Catal A 312:181CrossRefGoogle Scholar
  9. 9.
    Park JW, Lee JY, Kim KS, Hong SB, Seo G (2008) Appl Catal A 339:36CrossRefGoogle Scholar
  10. 10.
    Zhu Q, Kondo JN, Tatsumi T, Inagaki S, Ohnuma R, Kubota Y, Shimodaira Y, Kobayashi H, Domen K (2007) J Phys Chem C 111:5409CrossRefGoogle Scholar
  11. 11.
    Cui Z, Liu Q, Song W, Wan L (2006) Angew Chem Int Ed 45:6512CrossRefGoogle Scholar
  12. 12.
    Yamamoto K, Plévert J, Uneme M, Tatsumi T (2002) Microporous Mesoporous Mater 55:81CrossRefGoogle Scholar
  13. 13.
    Kondo JN, Yang S, Zhu Q, Inagaki S, Domen K (2007) J Catal 248:53CrossRefGoogle Scholar
  14. 14.
    Webb PA, Orr C (1997) In: Analytical methods in fine particle technology, 1 edn. Micromeritics Instrument Corporation. Norcross, GA, USAGoogle Scholar
  15. 15.
    Camblor MA, Corma A, Diaz-Cabanas M-J, Baerlocher C (1998) J Phys Chem B 102:44CrossRefGoogle Scholar
  16. 16.
    Zhao XS, Lu GQ, Whittaker AK, Millar GJ, Zhu HY (1997) J Phys Chem B 101:6525CrossRefGoogle Scholar
  17. 17.
    Yuen L-T, Zones SI, Harris TV, Gallegos EJ, Auroux A (1994) Microporous Mater 2:105CrossRefGoogle Scholar
  18. 18.
    Breck DW (1974) In: Zeolite molecular sieves, structure, chemistry and use. Wiley, New YorkGoogle Scholar
  19. 19.
    Halasz I, Kim S, Marcus B (2001) J Phys Chem B 105:10788CrossRefGoogle Scholar
  20. 20.
    Magnoux P, Cartraud P, Mignard S, Guisnet M (1987) J Catal 106:242CrossRefGoogle Scholar
  21. 21.
    Hutchings GH, Hunter R (1990) Catal Today 6:279CrossRefGoogle Scholar
  22. 22.
    Dahl IM, Kolboe S (1994) J Catal 149:458CrossRefGoogle Scholar
  23. 23.
    Zhang W, Burckle EC, Smirniotis PG (1999) Microporous Mesoporous Mater 33:173CrossRefGoogle Scholar
  24. 24.
    Stepanov AG, Luzgin MV, Romannikov VN, Sidelnikov VN, Paukshtis EA (1998) J Catal 178:466CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qingjun Zhu
    • 1
  • Junko N. Kondo
    • 1
  • Satoshi Inagaki
    • 2
  • Takashi Tatsumi
    • 1
  1. 1.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan
  2. 2.Division of Materials Science and Chemical EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations