Topics in Catalysis

, 52:1220 | Cite as

Modified Lanthanum Catalysts for Oxidative Chlorination of Methane

  • Elvira Peringer
  • Michael Salzinger
  • Markus Hutt
  • Angeliki A. Lemonidou
  • Johannes A. Lercher
Original Paper

Abstract

Mixtures of LaOCl and LaCl3 are promising catalysts for oxidative chlorination of methane to methyl chloride. The influence of metal dopants such as Co, Ni and Ce, which form stable chlorides under anticipated reaction conditions, on physicochemical and catalytic properties was explored. The presence of markedly redox-active dopants such as cobalt and cerium lead to a higher rate of methane conversion. However, the formed methyl chloride is strongly adsorbed and directly oxidized to CO leading to low methyl chloride selectivity. Doping with nickel weakens, in contrast, the interaction with methyl chloride leading to high methyl chloride selectivity.

Keywords

Methane oxidative chlorination LaCl3 LaOCl Methyl chloride Methane 

References

  1. 1.
    Golden DM, Benson SW (1969) Chem Rev 69(1):125CrossRefGoogle Scholar
  2. 2.
    Crabtree RH (1995) Chem Rev 95(7):2599CrossRefGoogle Scholar
  3. 3.
    Bablin JM, Lewis LN, Bui P, Gardner M (2003) Ind Eng Chem Res 42(15):3532CrossRefGoogle Scholar
  4. 4.
    Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2003) Science 301(5634):814CrossRefGoogle Scholar
  5. 5.
    Noronha LA, Souza-Aguiar EF, Mota CJA (2005) Catal Today 101(1):9CrossRefGoogle Scholar
  6. 6.
    Sun Y, Campbell SM, Lunsford JH, Lewis GE, Palke D, Tau LM (1993) J Catal 143(1):32CrossRefGoogle Scholar
  7. 7.
    Peringer E, Podkolzin SG, Jones ME, Olindo R, Lercher JA (2006) Top Catal 38(1–3):211CrossRefGoogle Scholar
  8. 8.
    Podkolzin SG, Stangland EE, Jones ME, Peringer E, Lercher JA (2007) J Am Chem Soc 129:2569CrossRefGoogle Scholar
  9. 9.
    Garcia CL, Resasco DE (1989) Appl Catal 46(2):251CrossRefGoogle Scholar
  10. 10.
    Kenney CN (1975) Catal Rev Sci Eng 11(2):197CrossRefGoogle Scholar
  11. 11.
    Rouco AJ (1995) J Catal 157(2):380CrossRefGoogle Scholar
  12. 12.
    Wattimena F, Sachtler WMH (1982) Stud Surf Sci Catal 7:816CrossRefGoogle Scholar
  13. 13.
    Peringer E, Tejuja C, Salzinger M, Lemonidou AA, Lercher JA (2008) Appl Catal A 350(2):178Google Scholar
  14. 14.
    Horvath G, Kawazoe K (1983) J Chem Eng Jpn 16(6):470CrossRefGoogle Scholar
  15. 15.
    Weast RC (ed.) (1975–1976) Handbook of chemistry and physics, 56th edn. CRC Press Inc, Cleveland, p D-183Google Scholar
  16. 16.
    Hölsä J, Lastusaari M, Valkonen J (1997) J Alloys Compd 262:299CrossRefGoogle Scholar
  17. 17.
    Weckhuysen BM, Rosynek MP, Lunsford JH (1999) Phys Chem Chem Phys 1(13):3157CrossRefGoogle Scholar
  18. 18.
    Van der Avert P, Weckhuysen BM (2004) Phys Chem Chem Phys 6(22):5256CrossRefGoogle Scholar
  19. 19.
    Van der Heijden AWAM, Garcia Ramos M, Weckhuysen BM (2007) Chem Eur J 109(1–2):97Google Scholar
  20. 20.
    Van der Heijden AWAM, Bellière V, Alonso LE, Daturi M, Manoilova OV, Weckhuysen BM (2005) J Phys Chem B 109:23993CrossRefGoogle Scholar
  21. 21.
    Van der Avert P, Weckhuysen BM (2002) Angew Chem Int Ed 41(24):4730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elvira Peringer
    • 1
  • Michael Salzinger
    • 1
  • Markus Hutt
    • 1
  • Angeliki A. Lemonidou
    • 1
    • 2
  • Johannes A. Lercher
    • 1
  1. 1.Department of ChemistryTechnische Universität MünchenGarchingGermany
  2. 2.Department of Chemical EngineeringAristotle University ThessalonikiThessalonikiGreece

Personalised recommendations