Skip to main content
Log in

Density Functional Theory Study on the Re Cluster/HZSM-5 Catalysis for Direct Phenol Synthesis from Benzene and Molecular Oxygen: Active Re Structure and Reaction Mechanism

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

DFT calculations have been achieved to obtain a convincing model for the active structure in a Re cluster/HZSM-5 catalyst active for direct phenol synthesis from benzene and molecular oxygen. Re10 clusters with interstitial N atoms composed of two Re octahedra edge-shared with each other were concluded as a stable active structure in agreement with the EXAFS analysis. The adsorption and behavior of benzene, oxygen atom and molecule and phenol on the Re cluster were examined to obtain the energy diagram for the phenol synthesis including intermediate and transition states, which explains the reaction steps for the phenol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seo YJ, Mukai Y, Tagawa T, Goto S (1997) J Mol Catal A 120:149

    Article  CAS  Google Scholar 

  2. Miyahara T, Kanazaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruya S (2001) J Mol Catal A 176:141

    Article  CAS  Google Scholar 

  3. Yamanaka H, Hamada R, Nibuta H, Nishiyama S, Tsuruya S (2002) J Mol Catal A 178:89

    Article  CAS  Google Scholar 

  4. Kusakari T, Sasaki T, Iwasawa Y (2004) Chem Commun 992

  5. Sumitomo S, Tanaka C, Yamaguchi ST, Ichihashi Y, Nishiyama S, Tsuruya S (2006) Ind Eng Chem Res 45:7444

    Article  Google Scholar 

  6. Liu YY, Murata K, Inaba M (2006) J Mol Catal A 256:247

    Article  CAS  Google Scholar 

  7. Seo YJ, Tagawa T, Goto S (1994) J Chem Eng Jpn 27:307

    Article  CAS  Google Scholar 

  8. Bremner DH, Burgess AE, Li FB (2000) Appl Catal A 203:111

    Article  CAS  Google Scholar 

  9. Jiang S, Kong Y, Wu C, Xu Z, Zhu HY, Wang CY, Wang J, Yan Q, Chin J (2006) J Catal 27:421

    CAS  Google Scholar 

  10. Mizuko T, Yamada H, Tagawa T, Goto S (2005) J Chem Eng Jpn 38:849

    Article  Google Scholar 

  11. Jian M, Zhu LF, Wang JY, Zhang J, Li GY, Hu CW (2006) J Mol Catal A 253:1

    Article  CAS  Google Scholar 

  12. Sato K, Hanaoka TA, Hamakawa S, Nishioka M, Kobayashi K, Inoue T, Namba T, Mizukami F (2006) Catal Today 118:57

    Article  CAS  Google Scholar 

  13. Gao XH, Xu J (2006) Appl Clay Sci 33:1

    Article  CAS  Google Scholar 

  14. Molinari R, Poerio T, Arugurio P (2006) Catal Today 118:52

    Article  CAS  Google Scholar 

  15. Rudakova NI, Klyuev MV, Erykalov YG, Ramazanov DN (2006) Russ J Gen Chem 76:1407

    Article  CAS  Google Scholar 

  16. Panov GI, Sheveleva GA, Kharitonov AS, Romannikov VN, Vostrikova LA (1992) Appl Catal A 82:31

    Article  CAS  Google Scholar 

  17. Panov GI (2000) CATTECH 4:18

    Article  CAS  Google Scholar 

  18. Motz JL, Heinichen H, Hölderich WF (1998) J Mol Catal A 136:175

    Article  CAS  Google Scholar 

  19. Hölderich WF (2000) Catal Today 62:115

    Article  Google Scholar 

  20. Kollmer F, Harsmann H, Hölderich WF (2004) J Catal 227:398

    CAS  Google Scholar 

  21. Centi G, Genovese C, Giordano G, Katovic A, Perathoner S (2004) Catal Today 91:17

    Article  Google Scholar 

  22. Centi G, Perathoner S, Arrigo R, Giordano G, Katovic A, Pedula V (2006) Appl Catal A 307:30

    Article  CAS  Google Scholar 

  23. Hensen EJM, Zhu Q, van Santen RA (2003) J Catal 220:260

    Article  CAS  Google Scholar 

  24. Hensen EJM, Zhu Q, van Santen RA (2005) J Catal 233:136

    Article  CAS  Google Scholar 

  25. Shiju NR, Fiddy S, Sonntag O, Stockenhuber M, Sankar G (2006) Chem Commun 4955

  26. Niwa S, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F (2002) Science 295:105

    Article  CAS  Google Scholar 

  27. Ehrich H, Berndt H, Pohl M, Jähnisch K, Baerns M (2002) Appl Catal A 230:271

    Article  CAS  Google Scholar 

  28. Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y (2005) Angew Chem Int Ed 44:2586

    Article  CAS  Google Scholar 

  29. Dong T, Li J, Huang F, Wang L, Tu J, Torimoto M, Sadakata M, Li Q (2005) Chem Commun 2724

  30. Haggin J (1993) Chem Eng News 71:23

    Google Scholar 

  31. Cornils B, Herrmann WA (2003) J Catal 216:33

    Article  Google Scholar 

  32. Lücke B, Narazana KV, Martin A, Jänisch K (2004) Adv Synth Catal 346:1407

    Article  Google Scholar 

  33. Bal R, Tada M, Sasaki T, Iwasawa Y (2006) Angew Chem Int Ed 45:448

    Article  CAS  Google Scholar 

  34. Tada M, Bal R, Sasaki T, Uemura Y, Inada Y, Tanaka S, Nomura M, Iwasawa Y (2007) J Phys Chem C 111:10095

    Article  CAS  Google Scholar 

  35. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  36. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  37. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  38. Halren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  Google Scholar 

  39. Bell S, Crighton JS (1984) J Chem Phys 80:2464

    Article  CAS  Google Scholar 

  40. Yoshizawa K, Shiota Y, Yumura T, Yamabe T (2000) J Phys Chem B 104:734

    Article  CAS  Google Scholar 

  41. Orita H, Itoh N (2004) Appl Catal A 258:17

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-In-Aid for Scientific Research on Priority Area for “Molecular Theory for Real Systems” (No. 461) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. T.S. acknowledges the support by a Grand-in-Aid for Scientific Research (No. 19550008) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, T., Tada, M. & Iwasawa, Y. Density Functional Theory Study on the Re Cluster/HZSM-5 Catalysis for Direct Phenol Synthesis from Benzene and Molecular Oxygen: Active Re Structure and Reaction Mechanism. Top Catal 52, 880–887 (2009). https://doi.org/10.1007/s11244-009-9225-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9225-1

Keywords

Navigation