Skip to main content
Log in

The Role of Bridging Group of Cyclopentadienyl Ligands for the Ziegler–Natta Catalysis: Theoretical Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The potential energy surfaces of the initial reactions of ethylene insertion for the Ziegler–Natta catalysis with bridging groups of Cp ligands were studied by ab initio MO and density functional methods. Three metals (Ti, Zr, and Hf) in the Zeigler-Natta catalysis and eight bridging groups (BH, CH2, NH, O, AlH, SiH2, PH, and S) were treated. For the complex formation between ethylene and metallocenes, two type structures (vertical and horizon) were found. The vertical type structures are more stable in energy than the horizon types. The formation energy of the complex between ethylene and the metallocenes by incorporation of bridging atom or group is related to the geometrical hindrance and the bond interaction as shown in the case of boron bridging system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiss K, Neugebauer U, Blau S, Long H (1996) J Organomet Chem 520:171

    Article  CAS  Google Scholar 

  2. Tian G, Wang B, Dai X, Xu S, Zhou X, Sun J (2001) J Orgnomet Chem 634:145

    Article  CAS  Google Scholar 

  3. Shaltout RM, Corey JY, Rath NP (1995) J Organomet Chem 503:205

    Article  CAS  Google Scholar 

  4. Alt HG, Fottinger K, Milius W (1998) J Organomet Chem 564:109

    Article  CAS  Google Scholar 

  5. Alt HG, Koppl A (2000) Chem Rev 100:1205

    Article  CAS  Google Scholar 

  6. Rraunschweig H, Breitling FM, Gullo E, Kraft M (2003) J Organomet Chem 680:31

    Article  Google Scholar 

  7. Rraunschweig H, Kraft M, Radacki K, Stellweg S, Anorg Z (2005) Allg Chem 631:2858

    Article  Google Scholar 

  8. Rraunschweig H, Kraft M, Radacki K, Stellweg S (2005) Eur J Inorg Chem 2754

  9. Rraunschweig H, Gross M, Kraft M, Kristen MO, Leusser D (2005) J Am Chem Soc 127:3282

    Article  Google Scholar 

  10. Rraunschweig H, Kupfer T (2008) J Am Chem Soc 130:4242

    Article  Google Scholar 

  11. Shapiro PJ (2001) Eur J Inorg Chem 321

  12. Aldridge S, Bresner C (2003) Coord Chem Rev 244:71

    Article  CAS  Google Scholar 

  13. Fan L, Harrison D, Woo TK, Ziegler T (1995) Organomertallics 14:2018

    Article  CAS  Google Scholar 

  14. Yoshida T, Koga N, Morokuma K (1996) Organometallics 15:766

    Article  CAS  Google Scholar 

  15. Woo TK, Margl PM, Lohrenz JCW, Blöchl PE, Ziegler T (1996) J Am Chem Soc 118:13021

    Article  CAS  Google Scholar 

  16. Margl P, Deng L, Zeigler T (1999) J Am Chem Soc 121:154

    Article  CAS  Google Scholar 

  17. Lanza G, Fragala IL, Marks TJ (2000) J Am Chem Soc 122:12764

    Article  CAS  Google Scholar 

  18. Carpentier JF, Maryin VP, Luci J, Jordan RF (2001) J Am Chem Soc 123:898

    Article  CAS  Google Scholar 

  19. Sakai S (2001) J Mol Struc (Theochem) 540:157

    Article  CAS  Google Scholar 

  20. Tobisch S, Ziegler T (2003) Organometallics 22:5392

    Article  CAS  Google Scholar 

  21. Xu Z, Vanka K, Ziegler T (2004) Organometallics 23:104

    Article  CAS  Google Scholar 

  22. Tobish S, Ziegler T (2004) J Am Chem Soc 126:9059

    Article  Google Scholar 

  23. Sakai S (2007) J Mol Struc (Theochem) 804:35

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  26. Pople JA, Binkley JS, Seeger R (1975) Int J Quantum Chem 9:229

    Article  Google Scholar 

  27. Pople JA, Krishnan R, Schegel HB, Binkley JS (1979) Int J Quantum Chem 573:225

    Google Scholar 

  28. Stevens WJ, Basch H, Krauss J (1984) J Chem Phys 18:6026

    Article  Google Scholar 

  29. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612

    Article  CAS  Google Scholar 

  30. Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555

    Article  CAS  Google Scholar 

  31. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  32. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  33. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    Article  CAS  Google Scholar 

  34. Gordon MS (1980) Chem Phys Lett 76:163

    Article  CAS  Google Scholar 

  35. Hariharan PC, Pople JA (1973) Theo Chim Acta 28:213

    Article  CAS  Google Scholar 

  36. Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016

    Article  CAS  Google Scholar 

  37. Franel MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) J Chem Phys 77:3654

    Article  Google Scholar 

  38. Binning RC Jr, Curtiss LA (1990) J Comp Chem 11:1206

    Article  CAS  Google Scholar 

  39. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223

    Article  CAS  Google Scholar 

  40. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976

    Article  CAS  Google Scholar 

  41. Cizek J (1969) Adv Chem Phys 14:35

    Article  CAS  Google Scholar 

  42. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  43. Scuseria GE, Janssen CL, Schaefer HFIII (1988) J Chem Phys 89:7382

    Article  CAS  Google Scholar 

  44. Scuseria GE, Schaefer HFIII (1989) J Chem Phys 90:3700

    Article  CAS  Google Scholar 

  45. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  46. Frisch KJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox E, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Pittsburgh, PA

  47. Resconi L, Cavallo L, Fait A, Piemontes F (2000) Chem Rev 100:1253

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grand-in-Aid for Scientific Research on Priority Areas (NO. 19028022, “Chemistry of Concerto catalysis”) from Ministry of Education, Culture, Sport, Science and Technology, Japan. The computer time was made available by the Computer Center of the Institute for Molecular Science (IMS), and all of them are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Sakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, S., Kojima, Y. The Role of Bridging Group of Cyclopentadienyl Ligands for the Ziegler–Natta Catalysis: Theoretical Study. Top Catal 52, 772–778 (2009). https://doi.org/10.1007/s11244-009-9201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9201-9

Keywords

Navigation