Skip to main content
Log in

Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Oxidation of toluene has been investigated over supported platinum as well as over a variety metal oxide (M x O y ) catalysts dispersed on high surface area γ-Al2O3. Catalysts were characterized with respect to their specific surface area (BET), metal dispersion (selective chemisorption of CO), phase composition and M x O y crystallite size (XRD) and reducibility (H2-TPR). Catalytic performance for the title reaction was investigated in the temperature range of 100–500 °C, using a feed composition consisting of 0.1% toluene in air. For Pt/M x O y catalysts, it has been found that catalytic performance depends on the nature of the support, with Pt/CeO2 being the most active catalyst at low temperatures. The intrinsic reaction rate per surface platinum atom does not depend on Pt loading (0.5–5 wt%), at least for Pt/Al2O3. Reducible metal oxides, such as ceria, are active for the title reaction and catalytic performance is improved significantly with increase of specific surface area (SSA). However, the intrinsic reaction rate per unit surface area is invariant with SSA. Dispersion of M x O y on high surface area inert supports, such as Al2O3, results in materials with relatively high catalytic activity, which seems to correlate well with the reducibility of metal oxides. Catalytic performance of M x O y /Al2O3 catalysts can be optimized by proper selection of M x O y loading. Best performing catalysts of this series include 60% MnO, 90% CeO2 and 5% CuO on Al2O3 which, under the present experimental conditions, are able to completely convert toluene toward CO2 at temperatures lower than 350 °C. Dispersion of Pt on M x O y /Al2O3 catalysts improves significantly the catalytic performance of irreducible M x O y but does not alter appreciably the activity of reducible M x O y /Al2O3 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spivey JJ (1987) Ind Eng Chem Res 26:2165

    Article  CAS  Google Scholar 

  2. Carpentier J, Lamonier JF, Siffert S, Zhilinskaya EA, Aboukaïs A (2002) Appl Catal A 234:91

    Article  CAS  Google Scholar 

  3. Paulis M, Peyrard H, Montes M (2001) J Catal 199:30

    Article  CAS  Google Scholar 

  4. Wu JCS, Chang T-Y (1998) Catal Today 44:111

    Article  CAS  Google Scholar 

  5. Papaefthimiou P, Ioannides T, Verykios XE (1998) Appl Catal B 15:75

    Article  CAS  Google Scholar 

  6. Okumura K, Kobayashi T, Tanaka H, Niwa M (2003) Appl Catal B 44:325

    Article  CAS  Google Scholar 

  7. Papaefthimiou P, Ioannides T, Verykios XE (1999) Catal Today 54:81

    Article  CAS  Google Scholar 

  8. Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003) Appl Catal B 40:43

    Article  Google Scholar 

  9. Takeguchi T, Aoyama S, Ueda J, Kikuchi R, Eguchi K (2003) Top Catal 23:159

    Article  CAS  Google Scholar 

  10. Brayner R, dos Santos Cunha D, Bozon-Verduraz F (2003) Catal Today 78:419

    Article  CAS  Google Scholar 

  11. Tseng T-K, Chu H, Ko T-H, Chung L-K (2005) J Hazard Mater 122:155

    Article  CAS  Google Scholar 

  12. Janbey A, Clark W, Noordally E, Grimes S, Tahir S (2003) Chemosphere 52:1041

    CAS  Google Scholar 

  13. Tsou J, Pinard L, Magnoux P, Figueiredo JL, Guisnet M (2003) Appl Catal B 46:371

    Article  CAS  Google Scholar 

  14. Zhang C, He H, Tanaka K (2005) Catal Commun 6:211

    Article  CAS  Google Scholar 

  15. Pecchi G, Reyes P, López T, Gómez R (2004) J Non-cryst Solids 345 and 346:624

    Google Scholar 

  16. de la Peña O’Shea VA, Álvarez-Galván MC, Fierro JLG, Arias PL (2005) Appl Catal B 57:191

    Article  Google Scholar 

  17. Chantaravitoon P, Chavadej S, Schwank J (2004) Chem Eng J 97:161

    Article  CAS  Google Scholar 

  18. Grbic B, Radic N, Markovic B, Stefanov P, Stoychev D, Marinova Ts (2006) Appl Catal B 64:51

    Article  CAS  Google Scholar 

  19. Ferreira RSG, de Oliveira PGP, Noronha FB (2004) Appl Catal B 50:243

    Article  CAS  Google Scholar 

  20. Centeno MA, Paulis M, Montes M, Odriozola JA (2002) Appl Catal A 234:65

    Article  CAS  Google Scholar 

  21. Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X (1998) J Catal 178:214

    Article  CAS  Google Scholar 

  22. Delimaris D, Ioannides T (2008) Appl Catal B 84:303

    Article  CAS  Google Scholar 

  23. Rajesh H, Ozkan US (1993) Ind Eng Chem Res 32:1622

    Article  CAS  Google Scholar 

  24. García T, Solsona B, Taylor SH (2006) Appl Catal B 66:92

    Article  Google Scholar 

  25. Hettige C, Mahanama KRR, Dissanayake DP (2001) Chemosphere 43:1079

    Article  CAS  Google Scholar 

  26. Kim S-C (2002) J Hazard Mater 91:285

    Article  CAS  Google Scholar 

  27. Li WB, Chu WB, Zhuang M, Hua J (2004) Catal Today 93–95:205

    Article  Google Scholar 

  28. Wang C-H, Lin S-S (2004) Appl Catal A 268:227

    Article  CAS  Google Scholar 

  29. Wang C-H (2004) Chemosphere 55:11

    Article  CAS  Google Scholar 

  30. Wyrwalski F, Lamonier J-F, Siffert S, Aboukaïs A (2007) Appl Catal B 70:393

    Article  CAS  Google Scholar 

  31. Wyrwalski F, Lamonier J-F, Siffert S, Gengembre L, Aboukaïs A (2007) Catal Today 49:332

    Article  Google Scholar 

  32. Panagiotopoulou P, Kondarides DI (2004) J Catal 225:327

    Article  CAS  Google Scholar 

  33. Li J-G, Ikegami T, Lee J-H, Mori T (2001) Acta Mater 49:419

    Article  CAS  Google Scholar 

  34. Panagiotopoulou P, Kondarides DI (2006) Catal Today 112:49

    Article  CAS  Google Scholar 

  35. Panagiotopoulou P, Kondarides DI (2007) Catal Today 127:319

    Article  CAS  Google Scholar 

  36. Grisel RJH, Weststrate CJ, Goossens A, Crajé MWJ, van der Kraan AM, Nieuwenhuys BE (2002) Catal Today 72:123

    Article  CAS  Google Scholar 

  37. Grisel RJH, Nieuwenhuys BE (2001) Catal Today 64:69

    Article  CAS  Google Scholar 

  38. Cordatos H, Ford D, Gorte RJ (1996) J Phys Chem 100:18128

    Article  CAS  Google Scholar 

  39. Cordatos H, Bunluesin T, Stubenrauch J, Vohs JM, Gorte RJ (1996) J Phys Chem 100:785

    Article  CAS  Google Scholar 

  40. Putna ES, Sherek B, Gorte RJ (1998) Appl Catal B 17:101

    Article  CAS  Google Scholar 

  41. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S (2006) J Catal 240:114

    Article  CAS  Google Scholar 

  42. Bertinchamps F, Grégoire C, Gaigneaux EM (2006) Appl Catal B 66:10

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the General Secretariat of Research and Technology (GSRT) Hellas and the Commission of the European Community, under the PENED 2005 Programme (contract 03ED257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xenophon E. Verykios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saqer, S.M., Kondarides, D.I. & Verykios, X.E. Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation. Top Catal 52, 517–527 (2009). https://doi.org/10.1007/s11244-009-9182-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9182-8

Keywords

Navigation