Abstract
The conversion of biomass compounds to aromatics by thermal decomposition in the presence of catalysts was investigated using a pyroprobe analytical pyrolyzer. The first step in this process is the thermal decomposition of the biomass to smaller oxygenates that then enter the catalysts pores where they are converted to CO, CO2, water, coke and volatile aromatics. The desired reaction is the conversion of biomass into aromatics, CO2 and water with the undesired products being coke and water. Both the reaction conditions and catalyst properties are critical in maximizing the desired product selectivity. High heating rates and high catalyst to feed ratio favor aromatic production over coke formation. Aromatics with carbon yields in excess of 30 molar carbon% were obtained from glucose, xylitol, cellobiose, and cellulose with ZSM-5 (Si/Al = 60) at the optimal reactor conditions. The aromatic yield for all the products was similar suggesting that all of these biomass-derived oxygenates go through a common intermediate. At lower catalyst to feed ratios volatile oxygenates are formed including furan type compounds, acetic acid and hydroxyacetaldehyde. The product selectivity is dependent on both the size of the catalyst pores and the nature of the active sites. Five catalysts were tested including ZSM-5, silicalite, beta, Y-zeolite and silica–alumina. ZSM-5 had the highest aromatic yields (30% carbon yield) and the least amount of coke.
This is a preview of subscription content, access via your institution.














References
- 1.
Lynd LR, Wyman CE, Gerngross TU (1999) Biotechnol Progress 15:777
- 2.
Wyman CE (1999) Annl Rev Energy Environ 24:189
- 3.
Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959
- 4.
Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego
- 5.
Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044
- 6.
Huber GW, Dumesic JA (2006) Catal Today 111:119
- 7.
Dauenhauer PJ, Dreyer BJ, Degenstein NJ, Schmidt LD (2007) Angew Chem Int Edit 46:5864
- 8.
Bridgwater AV (2003) Chem Eng J 91:87
- 9.
Goyal HB, Seal D, Saxena RC (2007) Renew Sustain Energy Rev 12:504
- 10.
Demirbas A (2007) Energy Sour A Recov Utilizat Environ Effect 29:753
- 11.
Bridgwater AV (1992) Energy Fuel 6:113
- 12.
Wright M, Brown RC (2007) Biofuels Bioprod Bioref 1:191
- 13.
Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuel 20:848
- 14.
Adam J, Antonakou E, Lappas A, Stoecker M, Nilsen MH, Bouzga A, Hustad JE, Oye G (2006) Microporous Mesoporous Mater 96:93
- 15.
Horne PA, Williams PT (1996) Fuel 75:1043
- 16.
Nokkosmaki MI, Kuoppala ET, Leppamaki EA, Krause AOI (2000) J Anal Appl Pyrol 55:119
- 17.
Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397
- 18.
Chen NY, Degnan TF Jr, Koenig LR (1986) Chemtech 16:506
- 19.
Corma AH, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307
- 20.
Olazar M, Aguado R, Bilbao J, Barona A (2000) AIChE J 46:1025
- 21.
Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Fuel 81:2087
- 22.
Millini R, Frigerio F, Bellussi G, Pazzuconi G, Perego C, Pollesel P, Romano U (2003) J Catal 217:298
- 23.
Cook M, Conner WC (1999) In: Proceedings of the international zeolite conference, 12th, Baltimore, July 5–10, 1998, 409 p
- 24.
Lourvanij K, Rorrer GL (1997) J Chem Technol Biotechnol 69:35
- 25.
Evans RJ, Milne TA (1987) Energy Fuel 1:123
- 26.
Fremont G (1992) J Catal 9:1
- 27.
Xia QH, Shen SC, Song J, Kawi S, Hidajat K (2003) J Catal 219:74
- 28.
Horne PA, Nugranad N, Williams PT (1995) J Anal Appl Pyrol 34:87
- 29.
Weisz PB, Haag WO, Rodewald PG (1979) Science 206:57
- 30.
Dao LH (1986) Institut National de la Recherche Scientifique, “Converting biomass into hydrocarbons”, Canada, Patent # 83-443162, 10 pp
- 31.
Dao LH, Haniff M, Houle A, Lamothe D (1987) Preprints Paper (American Chemical Society, Division of Fuel Chemistry) 32:308
- 32.
Hanniff MI, Dao LH (1987) Energy Biomass Wastes 10:831
- 33.
Dao LH, Haniff M, Houle A, Lamothe D (1988) ACS Symp Ser 376:328
- 34.
Hanniff MI, Dao LH (1988) Appl Catal 39:33
- 35.
Samolada MC, Baldauf W, Vasalos IA (1998) Fuel 77:1667
- 36.
Fabbri D, Torri C, Baravelli V (2007) J Anal Appl Pyrol 80:24
- 37.
Pattiya A, Titiloye JO, Bridgwater AV (2008) J Anal Appl Pyrol 81:72
- 38.
Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin DY (2007) Process Saf Environ Protect 85:473
- 39.
Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Chem Eng J 134:51
- 40.
Park HJ, Dong J-I, Jeon J-K, Yoo K-S, Yim J-H, Sohn JM, Park Y-K (2007) J Industr Eng Chem 13:182
- 41.
Alferov VV, Misnikov OS, Kislitsa OV, Sul’man EM, Murzin DY, Kumar N (2006) Kataliz v Promyshlennosti 6:42
- 42.
Sulman EM, Alferov VV, Kosivtsov YY, Sidorov AI, Misnikov OS, Afanasiev AE, Kumar N, Kubicka D, Agullo J, Salmi T, Murzin DY (2007) Chem Eng J 134:162
- 43.
Ernst S, Hartmann M, Sauerbeck S, Bongers T (2000) App Catal A 200:117
- 44.
Commerce USCHCoEa (ed) (1990) U.S. G.P.O
- 45.
Kirk-Othmer Encyclopedia of Chemical Technology (2004) Wiley-Interscience, Hoboken, NJ
- 46.
Fuscella W (2002) Kirk-Othmer Encyclopedia of Chemical Technology Online Edition, vol 3. John Wiley & Sons, Inc., p 596
- 47.
Yaws CL (1999) Chemical properties handbook. McGraw Hill, New York
- 48.
American Society of Testing Materials (ASTM) (1958) Knocking characteristics of pure hydrocarbons (Research Project 45), Special technical publication no. 225, Philadelphia, PA
- 49.
Refer to website (2006) http://www.epa.gov/ttn/chief/ap42/cho7/. In: Environment Protection Agency report, vol AP, 42 5th edition
- 50.
Baysar A, Johnson KJ, Kuester JL (1988) Res Thermochem Biomass Convers [International Conference on Research in Thermochemical Biomass Conversion, Phoenix, AZ] 680:680
- 51.
Krieger-Brockett B (1994) Res Chem Intermed 20:39
- 52.
Yoshizawa Y, Fujita T, Iwamatsu N (1996) Nippon Kikai Gakkai Ronbunshu B-hen 62:2874
- 53.
Miura M, Kaga H, Yoshida T, Ando K (2001) J Wood Sci 47:502
- 54.
Sarotti AM, Spanevello RA, Suarez AG (2007) Green Chem 9:1137
- 55.
Graef M, Allan GG, Krieger BB (1979) Preprints (American Chemical Society, Division of Petroleum Chemistry) 24:432
- 56.
Yu F, Hennessy KW, Deng S, Chen P, Ruan R (2007) In: Abstracts of papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23. IEC
- 57.
Yu F, Deng S, Chen P, Liu Y, Wang Y, Olsen A, Kittelson D, Ruan R (2007) Appl Biochem Biotechnol 136–140:957
- 58.
Ruan R (2008) Refer to website http://www.umb.no/statisk/umnumb/presentations/microwave_pyrolysis.pdf
- 59.
Corma AH, George W, Laurent S, O’Connor P (2007) J Catal 247:307
Acknowledgements
The authors would like to thank the National Science Foundation (Grant # 747996) and John and Elizabeth Armstrong for the generous funding. We would also like to acknowledge Jungho Jae and Phil Westmoreland for help with the pyroprobe.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Carlson, T.R., Tompsett, G.A., Conner, W.C. et al. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top Catal 52, 241 (2009). https://doi.org/10.1007/s11244-008-9160-6
Published:
Keywords
- Catalytic pyrolysis
- Aromatics
- Zeolite catalysts