Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks

Abstract

The conversion of biomass compounds to aromatics by thermal decomposition in the presence of catalysts was investigated using a pyroprobe analytical pyrolyzer. The first step in this process is the thermal decomposition of the biomass to smaller oxygenates that then enter the catalysts pores where they are converted to CO, CO2, water, coke and volatile aromatics. The desired reaction is the conversion of biomass into aromatics, CO2 and water with the undesired products being coke and water. Both the reaction conditions and catalyst properties are critical in maximizing the desired product selectivity. High heating rates and high catalyst to feed ratio favor aromatic production over coke formation. Aromatics with carbon yields in excess of 30 molar carbon% were obtained from glucose, xylitol, cellobiose, and cellulose with ZSM-5 (Si/Al = 60) at the optimal reactor conditions. The aromatic yield for all the products was similar suggesting that all of these biomass-derived oxygenates go through a common intermediate. At lower catalyst to feed ratios volatile oxygenates are formed including furan type compounds, acetic acid and hydroxyacetaldehyde. The product selectivity is dependent on both the size of the catalyst pores and the nature of the active sites. Five catalysts were tested including ZSM-5, silicalite, beta, Y-zeolite and silica–alumina. ZSM-5 had the highest aromatic yields (30% carbon yield) and the least amount of coke.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Lynd LR, Wyman CE, Gerngross TU (1999) Biotechnol Progress 15:777

    Article  CAS  Google Scholar 

  2. 2.

    Wyman CE (1999) Annl Rev Energy Environ 24:189

    Google Scholar 

  3. 3.

    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresour Technol 96:1959

    Article  CAS  Google Scholar 

  4. 4.

    Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego

  5. 5.

    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  6. 6.

    Huber GW, Dumesic JA (2006) Catal Today 111:119

    Article  CAS  Google Scholar 

  7. 7.

    Dauenhauer PJ, Dreyer BJ, Degenstein NJ, Schmidt LD (2007) Angew Chem Int Edit 46:5864

    Article  CAS  Google Scholar 

  8. 8.

    Bridgwater AV (2003) Chem Eng J 91:87

    Article  CAS  Google Scholar 

  9. 9.

    Goyal HB, Seal D, Saxena RC (2007) Renew Sustain Energy Rev 12:504

    Article  CAS  Google Scholar 

  10. 10.

    Demirbas A (2007) Energy Sour A Recov Utilizat Environ Effect 29:753

    Article  CAS  Google Scholar 

  11. 11.

    Bridgwater AV (1992) Energy Fuel 6:113

    Article  CAS  Google Scholar 

  12. 12.

    Wright M, Brown RC (2007) Biofuels Bioprod Bioref 1:191

    Article  CAS  Google Scholar 

  13. 13.

    Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuel 20:848

    Article  CAS  Google Scholar 

  14. 14.

    Adam J, Antonakou E, Lappas A, Stoecker M, Nilsen MH, Bouzga A, Hustad JE, Oye G (2006) Microporous Mesoporous Mater 96:93

    Article  CAS  Google Scholar 

  15. 15.

    Horne PA, Williams PT (1996) Fuel 75:1043

    Article  CAS  Google Scholar 

  16. 16.

    Nokkosmaki MI, Kuoppala ET, Leppamaki EA, Krause AOI (2000) J Anal Appl Pyrol 55:119

    Article  CAS  Google Scholar 

  17. 17.

    Carlson TR, Vispute TP, Huber GW (2008) ChemSusChem 1:397

    Article  CAS  Google Scholar 

  18. 18.

    Chen NY, Degnan TF Jr, Koenig LR (1986) Chemtech 16:506

    CAS  Google Scholar 

  19. 19.

    Corma AH, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307

    Article  CAS  Google Scholar 

  20. 20.

    Olazar M, Aguado R, Bilbao J, Barona A (2000) AIChE J 46:1025

    Article  CAS  Google Scholar 

  21. 21.

    Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Fuel 81:2087

    Article  CAS  Google Scholar 

  22. 22.

    Millini R, Frigerio F, Bellussi G, Pazzuconi G, Perego C, Pollesel P, Romano U (2003) J Catal 217:298

    CAS  Google Scholar 

  23. 23.

    Cook M, Conner WC (1999) In: Proceedings of the international zeolite conference, 12th, Baltimore, July 5–10, 1998, 409 p

  24. 24.

    Lourvanij K, Rorrer GL (1997) J Chem Technol Biotechnol 69:35

    Article  CAS  Google Scholar 

  25. 25.

    Evans RJ, Milne TA (1987) Energy Fuel 1:123

    Article  CAS  Google Scholar 

  26. 26.

    Fremont G (1992) J Catal 9:1

    Article  Google Scholar 

  27. 27.

    Xia QH, Shen SC, Song J, Kawi S, Hidajat K (2003) J Catal 219:74

    Article  CAS  Google Scholar 

  28. 28.

    Horne PA, Nugranad N, Williams PT (1995) J Anal Appl Pyrol 34:87

    Article  CAS  Google Scholar 

  29. 29.

    Weisz PB, Haag WO, Rodewald PG (1979) Science 206:57

    Article  CAS  Google Scholar 

  30. 30.

    Dao LH (1986) Institut National de la Recherche Scientifique, “Converting biomass into hydrocarbons”, Canada, Patent # 83-443162, 10 pp

  31. 31.

    Dao LH, Haniff M, Houle A, Lamothe D (1987) Preprints Paper (American Chemical Society, Division of Fuel Chemistry) 32:308

  32. 32.

    Hanniff MI, Dao LH (1987) Energy Biomass Wastes 10:831

    Google Scholar 

  33. 33.

    Dao LH, Haniff M, Houle A, Lamothe D (1988) ACS Symp Ser 376:328

    CAS  Article  Google Scholar 

  34. 34.

    Hanniff MI, Dao LH (1988) Appl Catal 39:33

    Article  Google Scholar 

  35. 35.

    Samolada MC, Baldauf W, Vasalos IA (1998) Fuel 77:1667

    Article  CAS  Google Scholar 

  36. 36.

    Fabbri D, Torri C, Baravelli V (2007) J Anal Appl Pyrol 80:24

    Article  CAS  Google Scholar 

  37. 37.

    Pattiya A, Titiloye JO, Bridgwater AV (2008) J Anal Appl Pyrol 81:72

    Article  CAS  Google Scholar 

  38. 38.

    Aho A, Kumar N, Eranen K, Salmi T, Hupa M, Murzin DY (2007) Process Saf Environ Protect 85:473

    Article  CAS  Google Scholar 

  39. 39.

    Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas AA, Triantafyllidis KS (2007) Chem Eng J 134:51

    Article  CAS  Google Scholar 

  40. 40.

    Park HJ, Dong J-I, Jeon J-K, Yoo K-S, Yim J-H, Sohn JM, Park Y-K (2007) J Industr Eng Chem 13:182

    CAS  Google Scholar 

  41. 41.

    Alferov VV, Misnikov OS, Kislitsa OV, Sul’man EM, Murzin DY, Kumar N (2006) Kataliz v Promyshlennosti 6:42

  42. 42.

    Sulman EM, Alferov VV, Kosivtsov YY, Sidorov AI, Misnikov OS, Afanasiev AE, Kumar N, Kubicka D, Agullo J, Salmi T, Murzin DY (2007) Chem Eng J 134:162

    Article  CAS  Google Scholar 

  43. 43.

    Ernst S, Hartmann M, Sauerbeck S, Bongers T (2000) App Catal A 200:117

    Article  CAS  Google Scholar 

  44. 44.

    Commerce USCHCoEa (ed) (1990) U.S. G.P.O

  45. 45.

    Kirk-Othmer Encyclopedia of Chemical Technology (2004) Wiley-Interscience, Hoboken, NJ

  46. 46.

    Fuscella W (2002) Kirk-Othmer Encyclopedia of Chemical Technology Online Edition, vol 3. John Wiley & Sons, Inc., p 596

  47. 47.

    Yaws CL (1999) Chemical properties handbook. McGraw Hill, New York

    Google Scholar 

  48. 48.

    American Society of Testing Materials (ASTM) (1958) Knocking characteristics of pure hydrocarbons (Research Project 45), Special technical publication no. 225, Philadelphia, PA

  49. 49.

    Refer to website (2006) http://www.epa.gov/ttn/chief/ap42/cho7/. In: Environment Protection Agency report, vol AP, 42 5th edition

  50. 50.

    Baysar A, Johnson KJ, Kuester JL (1988) Res Thermochem Biomass Convers [International Conference on Research in Thermochemical Biomass Conversion, Phoenix, AZ] 680:680

  51. 51.

    Krieger-Brockett B (1994) Res Chem Intermed 20:39

    Article  CAS  Google Scholar 

  52. 52.

    Yoshizawa Y, Fujita T, Iwamatsu N (1996) Nippon Kikai Gakkai Ronbunshu B-hen 62:2874

    CAS  Google Scholar 

  53. 53.

    Miura M, Kaga H, Yoshida T, Ando K (2001) J Wood Sci 47:502

    Article  CAS  Google Scholar 

  54. 54.

    Sarotti AM, Spanevello RA, Suarez AG (2007) Green Chem 9:1137

    Article  CAS  Google Scholar 

  55. 55.

    Graef M, Allan GG, Krieger BB (1979) Preprints (American Chemical Society, Division of Petroleum Chemistry) 24:432

  56. 56.

    Yu F, Hennessy KW, Deng S, Chen P, Ruan R (2007) In: Abstracts of papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23. IEC

  57. 57.

    Yu F, Deng S, Chen P, Liu Y, Wang Y, Olsen A, Kittelson D, Ruan R (2007) Appl Biochem Biotechnol 136–140:957

    Article  Google Scholar 

  58. 58.

    Ruan R (2008) Refer to website http://www.umb.no/statisk/umnumb/presentations/microwave_pyrolysis.pdf

  59. 59.

    Corma AH, George W, Laurent S, O’Connor P (2007) J Catal 247:307

Download references

Acknowledgements

The authors would like to thank the National Science Foundation (Grant # 747996) and John and Elizabeth Armstrong for the generous funding. We would also like to acknowledge Jungho Jae and Phil Westmoreland for help with the pyroprobe.

Author information

Affiliations

Authors

Corresponding author

Correspondence to George W. Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 134 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carlson, T.R., Tompsett, G.A., Conner, W.C. et al. Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top Catal 52, 241 (2009). https://doi.org/10.1007/s11244-008-9160-6

Download citation

Keywords

  • Catalytic pyrolysis
  • Aromatics
  • Zeolite catalysts