Skip to main content
Log in

Self-Metathesis of 1-Octene Using Alumina-Supported Re2O7 in Supercritical CO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this contribution we describe the use of heterogeneous catalysts for the liquid-phase self-metathesis of 1-octene in supercritical CO2. Our work aims at addressing the mass-transfer problems associated with such reaction systems. By coupling a heterogeneous supported Re2O7 catalyst with the use of scCO2, the self-metathesis of 1-octene takes place by and large much more rapidly than in traditional solvent media, and furthermore, by using scCO2 the overall efficiency and sustainability of the transformation can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Notes

  1. http://www.kva.se/

  2. http://webbook.nist.gov

References

  1. Ivin KJ (1997) J. C. Mol Olefin metathesis and metathesis polymerization. Academic Press, London

    Google Scholar 

  2. (1967) Hydrocarbon Proc 232–232

  3. Banks RL, Banaslak DS, Hudson PS, Norell JR (1982) J Mol Catal 15:21–33

    Article  CAS  Google Scholar 

  4. Freitas ER, Gum CR (1979) Chem Eng Prog (January):73–76

  5. Mol JC (2004) J Mol Catal A 213:39–45

    Article  CAS  Google Scholar 

  6. Mol JC (1999) Catal Today 51:289–299

    Article  CAS  Google Scholar 

  7. Kaptejin F, Mol JC (1982) J Chem Soc Faraday Trans 78:2583–2592

    Article  Google Scholar 

  8. Chabanas M, Baudouin A, Copéret C, Basset J-M (2001) J Am Chem Soc 123:2062–2063

    Article  CAS  Google Scholar 

  9. Jafarpour L, Heck M-P, Baylon C, Lee HM, Mioskowski C, Nolan SP (2002) Organometallics 21:671–679

    Article  CAS  Google Scholar 

  10. Weiss K, Guthmann W, Denzner M (1988) J Mol Catal 46:341–349

    Article  Google Scholar 

  11. Kawai T, Yamazaki Y, Taoka T, Kobayashi K (1984) J Catal 89:452–461

    Article  CAS  Google Scholar 

  12. Bosma RHA, van den Aardweg GCN, Mol JC (1985) J Organomet Chem 280:115–122

    Article  CAS  Google Scholar 

  13. Spronk R, Mol JC (1991) Appl Catal 70:295–306

    Article  CAS  Google Scholar 

  14. Duquette LG, Cieslinski RC, Jung CW, Garrou PE (1984) J Catal 90:362–365

    Article  CAS  Google Scholar 

  15. Mol JC (1994) J Mol Catal 90:185–199

    Article  CAS  Google Scholar 

  16. Mol JC (2002) Green Chem 4:5–13

    Article  CAS  Google Scholar 

  17. Biermann U, Metzger JO (2004) Top Catal 27:119–130

    Article  CAS  Google Scholar 

  18. Desimone JM, Mistele CD (1998). US Patent 5,840,820, University of North Carolina, 24 Nov

  19. Fuerstner A, Leitner W, Koch D, Langemann K, Six C (2002). US Patent 634851, Studiengesellshaft Kohle MBH, 19 Feb

  20. Leitner W, Theyssen N, Hou Z, Kottsieper K, Solinas M, Giunta D (2006). US Patent 2006252951, Studiengesellshaft Kohle MBH, 9 Nov

  21. Furstner A, Ackermann L, Beck K, Hori H, Koch D, Lagermann K, Liebl M, Six C, Leitner W (2001) J Am Chem Soc 123:9000–9006

    Article  CAS  Google Scholar 

  22. Perrin DD, Armarego WLF (1988) In: Purification of laboratory chemicals, 3rd edn. Pergamon Press, NY, USA

  23. Amingues P, Chauvin Y, Commereuc D, Hong CT, Lai CC, Liu YH (1991) J Mol Catal 65:39–50

    Article  Google Scholar 

  24. Andreini A, Xiaoding X, Mol JC (1986) App Catal 31–40

  25. Simons C, Hanefeld U, Arends IWCE, Minnaard AJ, Maschmeyer T, Sheldon RA (2004) Chem Commun 24:2830–2831

    Article  Google Scholar 

  26. Anand R, Maheswari R, Hanefeld U (2006) J Catal 242:82–91

    Article  CAS  Google Scholar 

  27. Oikawa T, Ookoshi T, Tanaka T, Yamamoto T, Onaka M (2004) Microporous Mesoporous Mater 74:93–103

    Article  CAS  Google Scholar 

  28. Kawai T, Okada T, Ishikawa T (1992) J Mol Catal 76:249–261

    Article  CAS  Google Scholar 

  29. Hamtil R, Žilkovà N, Balcar H, Čejka J (2006) App Catal A General 302:193–200

    Article  CAS  Google Scholar 

  30. Selva M, Fabris M, Perosa A, Canton P Green Chem (submitted for publication)

  31. Groβ T, Chen L, Lüdemann H-D (2004) In: Brunner G (ed) Supercritical fluids as solvents and reaction media, Chapt. 2.1 Elsevier Amsterdam

  32. Baiker A (1999) Chem Rev 99:453–473

    Article  CAS  Google Scholar 

  33. Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. In: Jessop PG, Leitner W, (eds).Wiley-VCH, Weinheim

  34. Hitzler MG, Smail FR, Ross SK, Poliakoff M (1998) Chem Commun 359–360

  35. Coverdale AK, Dearing PF, Ellison A (1983) J Chem Soc Chem Commun 567–568

  36. Busca G (1999) Phys Chem Chem Phys 1:723–736

    Article  CAS  Google Scholar 

  37. Handzlik J, Ogonowski J, Stoch J, Mikolajczyk M, Michorczyk P (2006) App Catal A General 312:213–219

    Article  CAS  Google Scholar 

  38. Edreva-Kardjieva RM, Andreev AA (1986) J Catal 97:321–329

    Article  Google Scholar 

Download references

Acknowledgments

The Italian Ministry for University and Research is acknowledged for funding. AP thanks the Australian DEST for an Endeavour Research Fellowship and RSC for a Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Maschmeyer or Maurizio Selva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, M., Aquino, C., Ward, A.J. et al. Self-Metathesis of 1-Octene Using Alumina-Supported Re2O7 in Supercritical CO2 . Top Catal 52, 315–321 (2009). https://doi.org/10.1007/s11244-008-9154-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9154-4

Keywords

Navigation