Skip to main content
Log in

Comparison of Activity and Selectivity of SSZ-33 Based Catalyst with other Zeolites in Toluene Disproportionation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

SSZ-33 based-catalyst, after modification with Mo and alumina binder, was evaluated in long-run tests in the toluene disproportionation in the presence of hydrogen as a carrier gas. The activity and selectivity of this catalyst were compared with those of ZSM-5 and mesoporous ZSM-5 prepared with the same concentration of Mo and alumina. Formation of the final catalysts decreased the void volume of micropores in order SSZ-33 > ZSM-5 > ZSM-5/Meso. Simultaneously, the concentration of Lewis acid sites increased due to the addition of alumina to the catalyst. The highest toluene conversion was achieved with SSZ-33 catalyst comprising 12-12-10-ring channels, which is the result of high acidity of this zeolite together with increased mass transport through large pores. ZSM-5 zeolite exhibited lower toluene conversion while only a low activity was found for mesoporous ZSM-5 probably due to the limitations of the access to the zeolite channels after modification with alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas M, Raja R (2007) Stud Surf Sci Catal 170:19

    Article  Google Scholar 

  2. Degnan TF Jr (2007) Stud Surf Sci Catal 170:54

    Article  Google Scholar 

  3. Férey G (2007) Stud Surf Sci Catal 170:66

    Article  Google Scholar 

  4. Thomas JM (2008) J Chem Phys 128 Art Nr 182502

  5. Čejka J, Wichterlová B (2002) Catal Rev 44:375

    Article  Google Scholar 

  6. Bejblová M, Žilková N, Čejka J (2008) Res Chem Intermed 34:439

    Article  Google Scholar 

  7. Tsai T-C, Liu S-B, Wang I (1999) Appl Catal A 181:355

    Article  CAS  Google Scholar 

  8. Chen NY, Garwood WE, Dwyer FG (1996) Shape selective catalysis in industrial application. Marcel Dekker, New York

  9. Franck H-G, Stadelhofer JW (1988) Industrial aromatic chemistry. Springer, Berlin

  10. Uguina MA, Sotelo JL, Serrano DP (1991) Appl Catal 76:183

    Article  CAS  Google Scholar 

  11. Tsai T-C, Chen WH, Liu S-B, Tsai C-H, Wang I (2002) Catal Today 73:39

    Article  CAS  Google Scholar 

  12. Wichterlová B, Čejka J (1992) Catal Lett 16:421

    Article  Google Scholar 

  13. Bhavani A, Karthekayen D, Rao A, Lingappan N (2005) Catal Lett 103:89

    Article  CAS  Google Scholar 

  14. Mavrodinova VP, Papova MD, Neinska YG, Minchev CI (2001) Appl Catal A 210:397

    Article  CAS  Google Scholar 

  15. Chaudhari PK, Saini PK, Chand S (2002) J Sci Ind Res 61:810

    CAS  Google Scholar 

  16. Mavrodinova VP, Papova MD (2005) Catal Commun 6:247

    Article  CAS  Google Scholar 

  17. Tsai T-C (2006) Appl Catal A 301:292

    Article  CAS  Google Scholar 

  18. Al-Khattaf S (2006) Energy Fuels 20:946

    Article  CAS  Google Scholar 

  19. Chen NY, Kaeding WW, Dwyer FG (1979) J Am Chem Soc 101:6783

    Article  CAS  Google Scholar 

  20. Olson DH, Haag WO (1984) Symp Ser 248:275

    Article  CAS  Google Scholar 

  21. Al-Khattaf S, Ali MA, Al-Amer A (2008) Energy Fuel 22:243

    Article  CAS  Google Scholar 

  22. Al-Khattaf S, Tukur NM, Al-Amer A (2007) Ind Eng Chem Res 46:4459

    Article  CAS  Google Scholar 

  23. Čejka J, Kotrla J, Krejčí A (2004) Appl Catal A 277:191

    Article  CAS  Google Scholar 

  24. Wagner P, Nakagawa Y, Lee GS, Davis ME, Elomari S, Medrud RC, Zones SI (2000) J Am Chem Soc 122:263

    Article  CAS  Google Scholar 

  25. Gil B, Zones SI, Hwang SJ, Bejblová M, Čejka J (2008) J Phys Chem C 112:2997

    Article  CAS  Google Scholar 

  26. Bejblová M, Zones SI, Čejka J (2007) Appl Catal A 327:255

    Article  CAS  Google Scholar 

  27. Jacobsen CJH, Madsen C, Houžvička J, Schmidt I, Carlsson A (2000) J Am Chem Soc 122:7116

    Article  CAS  Google Scholar 

  28. Hartmann M (2004) Angew Chem Int Ed 43:5880

    Article  CAS  Google Scholar 

  29. Čejka J, Mintova S (2007) Catal Rev 49:457

    Google Scholar 

  30. Zones SI (1990) US Patent 4 963 337

  31. Zones SI, Nakagawa Y, Yuen LT, Harris TV (1996) J Am Chem Soc 118:7558

    Article  CAS  Google Scholar 

  32. Chen CY, Zones SI, Hwang SJ, Bull LM (2005) Stud Surf Sci Catal 154:1547

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. S. I. Zones (Chevron) for providing SSZ-33 zeolite and supporting this work. The Support provided by The Center of Research Excellence in Petroleum Refining and Petrochemicals at King Fahd University of Petroleum and Minerals (KFUPM) is appreciated. J. Čejka was supported by the Academy of Sciences of the Czech Republic (1QS400400560) while Z. Musilová-Pavlačková thanks the Grant Agency of the Czech Republic (203/08/H032) and Dr. L. Brabec for recording the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Čejka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Khattaf, S., Musilová-Pavlačková, Z., Ali, M.A. et al. Comparison of Activity and Selectivity of SSZ-33 Based Catalyst with other Zeolites in Toluene Disproportionation. Top Catal 52, 140–147 (2009). https://doi.org/10.1007/s11244-008-9150-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9150-8

Keywords

Navigation