Skip to main content

Advertisement

Log in

Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ordered mesoporous carbons with semi-graphitized walls (OMCs-SGW) were successfully obtained by in situ silica-confined thermal decomposition of methane at low temperatures (800–1000 °C). This novel method, adopting ordered mesoporous silicas (OMSs) as hard templates, impregnating OMSs with small amounts of group VIII metal (Fe, Co, Ni) nitrates as catalysts, combining pore infiltration and carbonization/graphitization processes into a single step, provides an efficient way for the synthesis of OMCs-SGW. Methane, a special carbon precursor with small molecular size, is adopted because it allows complete penetration, and full carbon deposition inside the mesopores and is an easy graphitization process at low temperature assisted by catalysts. Two mesoporous silica materials, SBA-15 with hexagonal structure (p6m) and KIT-6 with cubic bicontinuous structure (Ia3d), were used as hard templates. SAXS patterns and TEM results show that the obtained carbon materials are faithfully replicated from the mesostructures of silica templates. Their pore walls are semi-graphitized and little structural shrinkage and negligible micropores are observed. The textural, structural properties and degree of graphitization of the OMCs-SGW can be conveniently tuned by controlling the temperature, namely, higher temperatures (e.g. 1000 °C) lead to products with more ordered and graphitized frameworks, but lower surface areas and pore volumes (about 390 m2/g and 0.45 cm3/g), while lower temperature (800 °C) results in products with less ordered and graphitized structures, but very high surface areas and pore volumes (up to 1200 m2/g and 2.08 cm3/g). OMCs-SGW can also be synthesized without catalysts. They have higher surface areas and pore volumes but much lower graphitized structures than the counterparts synthesized with catalysts. These OMCs-SGW show good hydrogen uptake capabilities (up to ~2 wt% at 10 bar and 77 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743

    Article  CAS  Google Scholar 

  2. Hartmann M, Vinu A, Chandrasekar G (2005) Chem Mater 17:829

    Article  CAS  Google Scholar 

  3. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377

    Article  CAS  Google Scholar 

  4. Yang Z, Xia Y, Mokaya R (2004) Adv Mater 16:727

    Article  CAS  Google Scholar 

  5. Kang M, Yi SH, Lee HI, Yie JE, Kim JM (2002) Chem Commun 1944

  6. Li ZJ, Yan WF, Dai S (2005) Langmuir 21:11999

    Article  CAS  Google Scholar 

  7. Li ZJ, Dai S (2005) Chem Mater 17:1717

    Article  CAS  Google Scholar 

  8. Che SN, Garcia-Bennett AE, Liu XY, Hodgkins RP, Wright PA, Zhao DY, Terasaki O, Tatsumi T (2003) Angew Chem Int Ed 42:3930

    Article  CAS  Google Scholar 

  9. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 2136

  10. Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601

    Article  CAS  Google Scholar 

  11. Fan J, Yu CZ, Gao T, Lei J, Tian BZ, Wang LM, Luo Q, Tu B, Zhou WZ, Zhao DY (2003) Angew Chem Int Ed 42:3146

    Article  CAS  Google Scholar 

  12. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677

    Article  CAS  Google Scholar 

  13. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  14. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169

    Article  CAS  Google Scholar 

  15. Kaneda M, Tsubakiyama T, Carlsson A, Sakamoto Y, Ohsuna T, Terasaki O, Joo SH, Ryoo R (2002) J Phys Chem B 106:1256

    Article  CAS  Google Scholar 

  16. Vix-Guterl C, Boulard S, Parmentier J, Werckmann J, Patarin J (2002) Chem Lett 1062

  17. Kim JY, Yoon SB, Yu JS (2003) Chem Mater 15:1932

    Article  CAS  Google Scholar 

  18. Zhang WH, Liang CH, Sun HJ, Shen ZQ, Guan YJ, Ying PL, Li C (2002) Adv Mater 14:1776

    Article  CAS  Google Scholar 

  19. Xia YD, Mokaya R (2004) Adv Mater 16:886

    Article  CAS  Google Scholar 

  20. Liang CD, Dai S (2006) J Am Chem Soc 128(16):5316

    Article  CAS  Google Scholar 

  21. Tanaka S, Nishiyama N, Egashira Y, Ueyama K (2005) Chem Commun 2125

  22. Zhang FQ, Meng Y, Gu D, Yan Y, Yu CZ, Tu B, Zhao DY (2005) J Am Chem Soc 127:13508

    Article  CAS  Google Scholar 

  23. Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Angew Chem Int Ed 44:7053

    Article  CAS  Google Scholar 

  24. Meng Y, Gu D, Zhang FQ, Shi YF, Cheng L, Feng D, Wu ZX, Chen ZX, Wan Y, Stein A, Zhao DY (2006) Chem Mater 18:4447

    Article  CAS  Google Scholar 

  25. Huang Y, Cai HQ, Yu T, Zhang FQ, Zhang F, Meng Y, Gu D, Wan Y, Sun XL, Tu B, Zhao DY (2007) Angew Chem Int Ed 46:1089–1093

    Article  CAS  Google Scholar 

  26. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Nature 388:756

    Google Scholar 

  27. Saito Y, Matsumoto T (1998) Nature 392:237

    Article  CAS  Google Scholar 

  28. Choi M, Altman IS, Kim YJ, Pikhitsa PV, Lee S, Park GS, Jeong T, Yoo JB (2004) Adv Mater 16:1721

    Article  CAS  Google Scholar 

  29. Fuertes AB, Alvarez S (2004) Carbon 42:3049

    Article  CAS  Google Scholar 

  30. Kim TW, Park IS, Ryoo R (2003) Angew Chem Int Ed 42:4375

    Article  CAS  Google Scholar 

  31. Kim SS, Pauly TR, Pinnavaia TJ (2000) Chem Commun 1661

  32. Yang HF, Yan Y, Liu Y, Zhang FQ, Zhang RY, Meng Y, Li M, Xie SH, Tu B, Zhao DY (2004) J Phys Chem B 108:17320

    Article  CAS  Google Scholar 

  33. Xia YD, Mokaya R (2004) Adv Mater 16:1553

    Article  CAS  Google Scholar 

  34. Xia YD, Mokaya R (2005) Chem Mater 17:1553

    Article  CAS  Google Scholar 

  35. Zhao DY, Huo QS, Stuky GD, Feng J, Melosh N, Fredrickson GH (1998) Science 279:548

    Article  CAS  Google Scholar 

  36. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024

    Article  CAS  Google Scholar 

  37. Kleitz F, Choi S, Ryoo R (2003) Chem Commun 17:2136

    Article  Google Scholar 

  38. Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Carbon 38:305

    Article  CAS  Google Scholar 

  39. Dumont M, Chollon G, Dourges MA, Pailler R, Bourrat X, Naslain R, Bruneel JL, Couzi M (2002) Carbon 40:1475

    Article  CAS  Google Scholar 

  40. Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, Van Der Voort P, Cool P, Vansant EF (2002) Chem Mater 14:2317

    Article  CAS  Google Scholar 

  41. Terres E, Panella B, Hayashi T, Kim YA, Endo M, Dominguez JM, Hirscher M, Terrones H, Terrones M (2005) Chem Phys Lett 403:363

    Article  CAS  Google Scholar 

  42. Yang Z, Xia Y, Sun X, Mokaya R (2006) J Phys Chem B 110:18424

    Article  CAS  Google Scholar 

  43. Yang Z, Xia Y, Mokaya R (2007) J Am Chem Soc 129:1673

    Article  CAS  Google Scholar 

  44. Pang J, Hampsey JE, Wu Z, Hu Q, Lu Y (2004) Appl Phys Lett 85:4887

    Article  CAS  Google Scholar 

  45. Xia K, Gao Q, Wu C, Song S, Ruan M (2007) Carbon 45:1989

    Article  CAS  Google Scholar 

  46. Wang Y, Korai Y, Mochida I, Nagayama K, Hatano H, Fukuda N (2001) Carbon 39:1627

    Article  CAS  Google Scholar 

  47. Liang C, Li Z, Dai S (2008) Angew Chem Int Ed 47:3696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (20721063, 20890123 and 20521140450), the State Key Basic Research Program of PRC (2006CB932302 and 2006CB202502), Shanghai Sci. & Tech. Committee (06DJ14006 and 08DZ2270500), Shanghai Nanotech Promotion Center (0652nm024), Shanghai Leading Academic Discipline Project (B108) and Australian Research Council (Discovery Project No. DP0773160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Yang, Y., Gu, D. et al. Synthesis of Ordered Mesoporous Carbon Materials with Semi-Graphitized Walls via Direct In-situ Silica-Confined Thermal Decomposition of CH4 and Their Hydrogen Storage Properties. Top Catal 52, 12–26 (2009). https://doi.org/10.1007/s11244-008-9134-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9134-8

Keywords

Navigation