Skip to main content
Log in

The Role of Molecular Mechanics and Dynamics Methods in the Development of Zeolite Catalytic Processes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Computational techniques based on molecular mechanics and dynamics can be effectively exploited for supporting the development of new processes based on the use of zeolite-based catalysts. The availability of efficient modeling tools and accurate energy parameters (force fields) allows the shape selectivity properties of zeolites to be rapidly evaluated and even predicted. This may limit the otherwise onerous and time-consuming experimental screening tests, increasing in the same time the probability to successfully identify the most promising catalyst for a given reaction. Some case studies are here reported illustrating the role of computational techniques in the development of new processes for the synthesis of cumene, 2,6-dimethylnaphtahlene, mesitylene and durene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Cundy CS, Cox PA (2005) Microporous Mesoporous Mater 82:1

    Article  CAS  Google Scholar 

  2. Sherman JD (1999) Proc Natl Acad Sci USA 96:3471

    Article  CAS  Google Scholar 

  3. Baerlocher Ch, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Weisz PB, Frilette WJ (1960) J Phys Chem 64:382

    Article  CAS  Google Scholar 

  5. Weisz PB, Frilette VJ, Maatman RW, Mower EB (1962) J Catal 1:307

    Article  CAS  Google Scholar 

  6. Weitkamp J, Ernst S, Puppe L (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites. Fundamentals and applications. Springer, Berlin ch. 5

    Google Scholar 

  7. Csicsery SM (1970) J Catal 19:394

    Article  CAS  Google Scholar 

  8. Csicsery SM (1971) J Catal 23:124

    Article  CAS  Google Scholar 

  9. Catlow CRA (1991) Modelling of structure and reactivity in zeolites. Academic Press, London

    Google Scholar 

  10. Catlow CRA, Van Santen RA, Smit B (2004) Computer modelling of microporous materials. Elsevier, London

    Google Scholar 

  11. Horsley JA, Fellmann JD, Derouane EG, Freeman CM (1994) J Catal 147:231

    Article  CAS  Google Scholar 

  12. Demontis P, Suffritti GB (1997) Chem Rev 97:2845

    Article  CAS  Google Scholar 

  13. Auerbach SM, Jousse F, Vercauteren DP in ref. 3, ch. 3

  14. Jousse F, Leherte L, Vercauteren DP (1997) J Mol Catal A: Chem 119:165

    Article  CAS  Google Scholar 

  15. Webb EBIII, Grest GS (1998) Catal Lett 56:15

    Google Scholar 

  16. Webb EBIII, Grest GS, Mondello M (1999) J Phys Chem B 103:4949

    Article  CAS  Google Scholar 

  17. Schuring D, Jansen APJ, Van Santen RA (2000) J Phys Chem B 104:941

    Article  CAS  Google Scholar 

  18. Sastre G, Corma A, Catlow CRA (1999) J Phys Chem B 103:5187

    Article  CAS  Google Scholar 

  19. Hou TJ, Zhu LL, Xu XJ (2000) J Phys Chem B 104:9356

    Article  CAS  Google Scholar 

  20. Sastre G, Raj N, Catlow CRA, Roque-Malherbe R, Corma A (1998) J Phys Chem B 102:3198

    Article  CAS  Google Scholar 

  21. Gener I, Ginestet G, Buntinx G, Brémard C (2000) J Phys Chem B 104:11656

    Article  CAS  Google Scholar 

  22. Heink W, Kärger J, Pfeifen H, Datema KP, Nowak AK (1992) J Chem Soc Faraday Trans 88:3505

    Article  CAS  Google Scholar 

  23. Lewis DM, Freeman CM, Catlow CRA (1992) J Phys Chem 99:11194

    Article  Google Scholar 

  24. Millini R, Previde Massara E, Perego G, Bellussi G (1992) J Catal 137:497

    Article  CAS  Google Scholar 

  25. Millini R, Perego G, Berti D, Parker WO Jr, Carati A, Bellussi G (2000) Microporous Mesoporous Mater 35–36:387

    Article  Google Scholar 

  26. van Koningsveld H, Jansen JC (1996) Microporous Mater 6:159

    Article  Google Scholar 

  27. Fritzsche A, Wolfsberg M, Haberlandt R, Demontis P, Suffritti GP, Tilocca A (1998) Chem Phys Lett 296:253

    Article  CAS  Google Scholar 

  28. Jost S, Bär N-K, Fritzsche S, Haberlandt R, Kärger J (1998) J Phys Chem B 102:6375

    Article  CAS  Google Scholar 

  29. Song L, Sun Z-L, Rees LVC (2002) Microporous Mesoporous Mater 55:31

    Article  CAS  Google Scholar 

  30. Snurr RQ, Bell AT, Theodorou DN (1994) J Phys Chem 98:11948

    Article  CAS  Google Scholar 

  31. Bouyermaouen A, Bellemans A (1998) J Chem Phys 108:2170

    Article  CAS  Google Scholar 

  32. Deem MW, Newsam JM, Creighton JA (1992) J Am Chem Soc 114:7198

    Article  CAS  Google Scholar 

  33. Freeman CM, Catlow CRA, Thomas JM, Brode S (1991) Chem Phys Lett 186:137

    Article  CAS  Google Scholar 

  34. Domokos L, Lefferts L, Seshan K, Lercher JA (2001) J Catal 203:351

    Article  CAS  Google Scholar 

  35. Millini R, Carluccio LC, Carati A, Parker WO Jr (2001) Microporous Mesoporous Mater 46:191

    Article  CAS  Google Scholar 

  36. Millini R (2001) Stud Surf Sci Catal 135:264

    Article  Google Scholar 

  37. Hill JR, Sauer J (1994) J Phys Chem 98:1238

    Article  CAS  Google Scholar 

  38. Sun H (1998) J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  39. Newsam JM, Sun H, Rigby D, Eichinger BE, Bick A, Freeman CM, Gorman AM (1999) Book of abstract, 217th ACS national meeting, Anaheim, CA, March 21–25, 1999

  40. Rigby D, Sun H (2000) Abstracts of papers, 220th ACS national meeting, Washington DC, 2000, 2000-797756

  41. Minachev Kr M, Isakov YaI, Garanin VI, Piguzova LI, Bogomolov VI, Vitukina AS (1965) Neftekhimiya 5:676

    CAS  Google Scholar 

  42. Kaeding WW, Holland RE (1988) J Catal 109:212

    Article  CAS  Google Scholar 

  43. Bellussi G, Pazzuconi G, Perego C, Girotti G, Terzoni G (1995) J Catal 157:227

    Article  CAS  Google Scholar 

  44. Perego C, Ingallina P (2002) Catal Today 73:3

    Article  CAS  Google Scholar 

  45. Perego C, Amarilli S, Millini R, Bellussi G, Girotti G, Terzoni G (1996) Microporous Mater 6:395

    Article  CAS  Google Scholar 

  46. Kolesnikov IM, Panchekov GM (1962) Neftekhimiya 2:48

    CAS  Google Scholar 

  47. Catalysis User Guide, Release 236, Biosym Technologies, Inc., San Diego, CA, 1994

  48. Millini R, Perego G, Parker WO Jr, Bellussi G, Carluccio LC (1995) Microporous Mater 4:221

    Article  CAS  Google Scholar 

  49. Fraenkel D, Cherniavsky M, Ittah B, Levy M (1986) J Catal 101:273

    Article  CAS  Google Scholar 

  50. Corma A, Correl C, Perez-Pariente J, Guil JM, Guil-Lopez R, Nicolopulos S, Gonzalez Calbet J, Vallet-Regi M (1996) Zeolites 16:7

    Article  CAS  Google Scholar 

  51. Corma A, Fornes V, Pergher SB, Maesen Th LM, Buglass JG (1998) Nature 396:353

    Article  CAS  Google Scholar 

  52. Perego C, Millini R, Parker WO Jr, Bellussi G, Romano U (2004) Stud Surf Sci Catal 154:2239

    Article  Google Scholar 

  53. Ivanova II, Brunel D, Nagy JB, Derouane EG (1995) J Mol Catal A: Chem 95:243

    Article  CAS  Google Scholar 

  54. Cerius2—Release 4.2MS—Accelrys, San Diego, CA, 2000

  55. Lillwitz LD (2001) Appl Catal A: Gen 221:337

    Article  CAS  Google Scholar 

  56. Millini R, Frigerio F, Bellussi G, Pazzuconi G, Perego C, Pollesel P, Romano U (2003) J Catal 217:298

    CAS  Google Scholar 

  57. Pu S-B, Inui T (1996) Appl Catal A: Gen 146:305

    Article  CAS  Google Scholar 

  58. Gläser R, Li R, Hunger M, Ernst S, Weitkamp J (1998) Catal Lett 50:141

    Article  Google Scholar 

  59. Pu S-B, Inui T (1996) Zeolites 17:34

    Article  Google Scholar 

  60. Pazzuconi G, Terzoni G, Perego C, Bellussi G (2001) Stud Surf Sci Catal 135:25-O-03

    Google Scholar 

  61. Pazzuconi G, Perego C, Millini R, Frigerio F, Mansani R, Rancati D (2000) US Patent 6,147,270 assigned to EniTecnologie S.p.A.—EniChem S.p.A

  62. Girotti G (2003) In: Proceedings of the ERTC petrochemical conference, Paris 3–5 March 2003

  63. Olah GA, Molnar A (1995) Hydrocarbon chemistry. Wiley, New York

    Google Scholar 

  64. Park S-H, Lee J-H, Rhee H-K (2000) Korean J Chem Eng 17:198

    Article  CAS  Google Scholar 

  65. Röger HP, Möller KP, O’Connor CT (1997) Microporous Mater 8:151

    Article  Google Scholar 

  66. Röger HP, Möller KP, O’Connor CT (1998) J Catal 176:68

    Article  Google Scholar 

  67. Park S-H, Rhee H-K (2000) Catal Today 63:267

    Article  CAS  Google Scholar 

  68. Collins DJ, Quirey CB, Fertig JE, Davis BH (1986) Appl Catal 28:35

    Article  CAS  Google Scholar 

  69. Chao K, Leu L (1989) Zeolites 9:193

    Article  CAS  Google Scholar 

  70. Wang I, Tsai T-C, Huang S-T (1990) Ind Eng Chem Res 29:2005

    Article  CAS  Google Scholar 

  71. Das L, Bhat YS, Halgeri AB (1994) Catal Lett 23:161

    Article  CAS  Google Scholar 

  72. Millini R, Rizzo C, Perego C, Terzoni G (2006) Atti del XXII Congresso della Società Chimica Italiana, Firenze 10–15 September 2006, p 266

  73. Dalloro L, Cesana A, Buzzoni R, Rivetti F, Rizzo C, Arrigoni V, Perego C (2004) US Patent 6,949,687, assigned to PolimeriEuropa S.p.A. and EniTecnologie S.p.A

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Millini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millini, R., Perego, C. The Role of Molecular Mechanics and Dynamics Methods in the Development of Zeolite Catalytic Processes. Top Catal 52, 42–66 (2009). https://doi.org/10.1007/s11244-008-9133-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9133-9

Keywords

Navigation