Skip to main content

Advertisement

Log in

Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of M/Al2O3 catalysts for the reaction of steam reforming of ethanol has been investigated in the temperature range of 300–450 °C. It has been found that the catalytic performance varies in the order of Pt > Pd > Rh > Ru, with Pt exhibiting high activity and selectivity toward hydrogen production, as well as long term stability at low temperatures. It is shown that the reaction occurs in a bifunctional manner, with the participation of both the dispersed metallic phase and the support. Ethanol interacts strongly with the Al2O3 carrier, promoting mainly ethanol dehydration, while in the presence of Pt, catalytic activity is shifted toward lower temperatures. Ethanol decomposition and dehydrogenation reactions dominate at low temperatures, while reforming, water-gas shift and methanation contribute significantly to product distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghenciu AF (2002) Curr Opin Solid State Mater Sci 6:389

    Article  Google Scholar 

  2. Trimm DL, Önsan ZI (2001) Catal Rev 43:31

    Article  CAS  Google Scholar 

  3. Chan SH, Ding OL (2005) Int J Hydrogen Energy 30:167

    Article  CAS  Google Scholar 

  4. Qi A, Peppley B, Karan K (2007) Fuel Process Technol 88:3

    Article  CAS  Google Scholar 

  5. Mariño F, Boveri M, Baronetti G, Laborde M (1998) Int J Hydrogen Energy 23:1095

    Article  Google Scholar 

  6. Mariño F, Cerrella E, Duhalde S, Jobbagy M, Laborde M (2001) Int J Hydrogen Energy 26:665

    Article  Google Scholar 

  7. Klouz V, Fierro V, Denton P, Katz H, Lisse J, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sources 105:26

    Article  CAS  Google Scholar 

  8. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993

    Article  CAS  Google Scholar 

  9. Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) J Hydrogen Energy 32:1462

    Article  Google Scholar 

  10. Kaddouri A, Mazzocchia C (2004) Catal Commun 5:339

    Article  CAS  Google Scholar 

  11. Batista S, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 124:99

    Article  Google Scholar 

  12. Liguras DK, Kondarides DI, Verykios XE (2003) Appl Catal A Gen 43:345

    CAS  Google Scholar 

  13. Cavallaro S, Freni S, Mondello N, Frusteri F (2003) Appl Catal A Gen 249:119

    Article  CAS  Google Scholar 

  14. Aupretre F, Descorme C, Duprez D (2002) Catal Commun 3:263

    Article  CAS  Google Scholar 

  15. Goula MA, Kontou SK, Tsiakaras PE (2004) Appl Catal B Environ 49:135

    Article  CAS  Google Scholar 

  16. Fatsikostas AN, Kondarides DI, Verykios XE (2002) Catal Today 75:145

    Article  CAS  Google Scholar 

  17. Comas J, Marino F, Laborde M, Amadeo N (2004) Chem Eng J 98:61

    Article  CAS  Google Scholar 

  18. Frusteri F, Fremi S, Chiodo V, Spadaro L, Boruna G, Cavallaro S (2004) J Power Sources 132:139

    Article  CAS  Google Scholar 

  19. Frusteri F, Fremi S, Chiodo V, Spadaro L, Di Blasi O, Boruna G, Cavallaro S (2004) J Power Sources 270:1

    CAS  Google Scholar 

  20. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  21. Liberatori JDC, Ribeiro RU, Zanchet D, Noronha FB, Bueno JMC (2007) Appl Catal A Gen 327:197

    Article  CAS  Google Scholar 

  22. Sun J, Qiu X-P, Wu F, Zhu W-T (2005) Int J Hydrogen Energy 30:437

    Article  CAS  Google Scholar 

  23. Diagne C, Idriss H, Kiennemann A (2002) Catal Commun 3:565

    Article  CAS  Google Scholar 

  24. Raskó J, Dömök M, Baán K, Erdőhelyi A (2006) Appl Catal A Gen 299:202

    Article  Google Scholar 

  25. Erdőhelyi A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Catal Today 116:367

    Article  Google Scholar 

  26. Panagiotopoulou P, Kondarides DI (2004) J Catal 225:327

    Article  CAS  Google Scholar 

  27. Chafik T, Kondarides DI, Verykios XE (2000) J Catal 190:446

    Article  CAS  Google Scholar 

  28. Basagiannis AC, Verykios XE (2006) Appl Catal A Gen 308:182

    Article  CAS  Google Scholar 

  29. Dömök M, Tóth M, Raskó J, Erdőhelyi A (2007) Appl Catal B Environ 69:262

    Article  Google Scholar 

  30. Panagiotopoulou P, Kondarides DI (2006) Catal Today 112:49

    Article  CAS  Google Scholar 

  31. Breen JP, Burch R, Coleman HM (2002) Appl Catal B Environ 39:65

    Article  CAS  Google Scholar 

  32. Yee A, Morrison SJ, Idriss H (2000) Catal Today 63:327

    Article  CAS  Google Scholar 

  33. Vaidya PD, Rodrigues AE (2006) Chem Eng J 117:39

    Article  CAS  Google Scholar 

  34. Dybkjaer I (1995) Fuel Process Technol 42:85

    Article  Google Scholar 

  35. Cong Y, van Spaendonk V, Masel RI (1997) Surf Sci 385:246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xenophon E. Verykios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basagiannis, A.C., Panagiotopoulou, P. & Verykios, X.E. Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts. Top Catal 51, 2–12 (2008). https://doi.org/10.1007/s11244-008-9130-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9130-z

Keywords

Navigation