Skip to main content

Advertisement

Log in

Hydrogen Production from Ethanol over Rh–Pd/CeO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The work presents a study by temperature programmed desorption, in situ infra red spectroscopy and catalytic steam reforming of ethanol (SRE) over CeO2 and the bimetallic Pd-Rh/CeO2; comparison with the monometallic catalysts (Rh/CeO2 and Pd/CeO2) was also made for the steam reforming study. Comparing TPD of ethanol over CeO2 and the bimetallic catalysts indicated two main differences: the direct oxidation route to acetate over CeO2 is suppressed by the presence of the metal and the lowering of the dehydrogenation reaction temperature by about 100 K. In situ IR study indicated that the bimetallic catalyst breaks the carbon–carbon bond of ethanol at low temperature <400 K, as evidenced by the presence of adsorbed CO species. SRE over ½ wt.% Rh–½ wt.% Pd/CeO2, at 770 K at realistic conditions showed that maximum conversion and selectivity could be achieved. This high activity considering the very small amounts of transition metals on CeO2 is discussed in light of their electronic and geometric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Idriss H (2004) Platinum Met Rev 48:105

    Article  CAS  Google Scholar 

  2. Sheng P-Y, Yee A, Bowmaker GA, Idriss H (2002) J Catal 208:393

    Article  CAS  Google Scholar 

  3. Guil JM, Homs N, Llorca J, Ramírez de la Piscina P (2005) J Phys Chem B 109:10813

    Article  CAS  Google Scholar 

  4. Erdőhelyi A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Catal Today 116:367

    Article  Google Scholar 

  5. Cavallaro S, Chiodo V, Freni S, Mondello N, Frusteri F (2003) Appl Catal A Gen 249:119

    Article  CAS  Google Scholar 

  6. Wanat EC, Venkataraman K, Schmidt LD (2004) Appl Catal A Gen 276:155

    Article  CAS  Google Scholar 

  7. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  8. Salge JR, Deluga GA, Schmidt LD (2005) J Catal 235:69

    Article  CAS  Google Scholar 

  9. Sheng P-Y, Bowmaker GA, Idriss H (2004) Appl Catal A 261:171

    Article  CAS  Google Scholar 

  10. Yee A, Morrison SJ, Idriss H (2000) Catal Today 63:327

    Article  CAS  Google Scholar 

  11. Sheng PY, Chiu WW, Yee A, Morrison SJ, Idriss H (2007) Catal Today 129:313

    Article  CAS  Google Scholar 

  12. Chen H-L, Liu S-H, Ho J-J (2006) J Phys Chem B 110:14816

    Article  CAS  Google Scholar 

  13. Yee A, Morrison S, Idriss H (1999) J Catal 186:279

    Article  CAS  Google Scholar 

  14. Yee A, Morrison SJ, Idriss H (2000) J Catal 191:30

    Article  CAS  Google Scholar 

  15. Sheng PY, Idriss H (2004) J Vac Sci Technol A 22:1652

    Article  CAS  Google Scholar 

  16. Wilson EL, Grau-Crespo R, Pang CL, Cabailh G, Chen Q, Purton JA, Catlow CRA, Brown WA, de Leeuw NH, Thornton G (2008) J Phys Chem C 112:10918

    Article  CAS  Google Scholar 

  17. Hosokawa S, Taniguchi M, Utani K, Kanai H, Imamura S (2005) Appl Catal A Gen 289:115

    Article  CAS  Google Scholar 

  18. Kuhn WK, He J-W, Goodman DW (1992) J Vac Sci Technol A 10:2477

    Article  CAS  Google Scholar 

  19. Paul J, Rosen A (1983) Surf Sci 127:L93

    Article  CAS  Google Scholar 

  20. Idriss H, Scott M, Llorca J, Chan SC, Chiu W, Sheng PY, Yee A, Blackford MA, Pas SJ, Hill AJ, Alamgir FM, Rettew R, Petersburg C, Senanayake SD, Barteau MA (in press) ChemSusChem

  21. Frank M, Kühnemuth R, Bäumer M, Freund H-J (2000) Surf Sci 454–456:968

    Article  Google Scholar 

  22. Frank M, Kuhnemuth R, Baumer M, Freund HJ (1999) Surf Sci 427:288

    Article  Google Scholar 

  23. Dai CH, Worley SD (1998) Langmuir 4:326

    Article  Google Scholar 

  24. Mergler YJ, Ramsaransing DRG, Nieuwenhuys BE (1994) Recl Trav Chim Pays-Bas 113:431

    CAS  Google Scholar 

  25. Rice CA, Worley SD, Curtis CW, Guin JA, Tarrer AR (1981) J Chem Phys 74:6487

    Article  CAS  Google Scholar 

  26. Diaz AL, Quigley WWC, Yamamoto HD, Bussell ME (1994) Langmuir 10:1461

    Article  CAS  Google Scholar 

  27. Gorte RJ, Zhao S (2005) Catal Today 104:18

    Article  CAS  Google Scholar 

  28. Twigg MV (1989) Catalyst handbook, 2nd edn. Wolfe Publishing Group, Frome, UK

    Google Scholar 

  29. Solymosi F, Kovacs I, Revesz K (1996) Surf Sci 356:121

    Article  CAS  Google Scholar 

  30. Klivenyi G, Solymosi F (1995) Surf Sci 342:168

    Article  CAS  Google Scholar 

  31. Ko EI, Benziger JB, Madix RJ (1980) J Catal 62:264

    Article  CAS  Google Scholar 

  32. Idriss H, Kim KS, Barteau MA (1993) J Catal 139:119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the VC fund of the University of Auckland for a research grant. M.S. and H·I. thank Industrial Research Limited (Christchurch) and Arnold Corp. (Wellington) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Idriss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, M., Goeffroy, M., Chiu, W. et al. Hydrogen Production from Ethanol over Rh–Pd/CeO2 Catalysts. Top Catal 51, 13–21 (2008). https://doi.org/10.1007/s11244-008-9125-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9125-9

Keywords

Navigation