Topics in Catalysis

, 49:68 | Cite as

Mechanistic Aspects of Catalytic Steam Reforming of Biomass-related Oxygenates

  • Kazuhiro Takanabe
  • Ken-Ichi Aika
  • K. SeshanEmail author
  • Leon Lefferts
Original Paper


Catalytic steam reforming of acetic acid, as a model oxygenate derived from biomass, was studied over supported Pt catalysts. It is suggested that both Pt and the support are involved in the activation of acetic acid and water, respectively. This manifests in different intrinsic activity for Pt when anchored on different supports. Accordingly, the reforming proceeds most likely at the boundary between the Pt and the support and the number of Pt sites that are in the close proximity of the support determine hydrogen formation rates.


Hydrogen Bio-oil Acetic acid Steam reforming Mechanism Pt 



This work was performed under the auspices of NIOK, the Netherlands Institute of Catalysis Research, and the Process-Technology Institute Twente. We are grateful to Ing. J.A.M. Vrielink and Dr. M. Smithers for BET and TEM measurements, respectively.


  1. 1.
    Chornet E, Czernik S (2002) Nature 418:928CrossRefGoogle Scholar
  2. 2.
    Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 5, Ch 1. Springer-Verlag, BerlinGoogle Scholar
  3. 3.
    Bridgwater AB (2002) Fast pyrolysis of biomass: a handbook, vol 2. CPL press, p 25Google Scholar
  4. 4.
    Bridgwater AV (1996) Catal Today 29:285CrossRefGoogle Scholar
  5. 5.
    Wang D, Montané D, Chornet E (1996) Appl Catal A 143:245CrossRefGoogle Scholar
  6. 6.
    Takanabe K, Aika K, Seshan K, Lefferts L (2004) J Catal 227:101CrossRefGoogle Scholar
  7. 7.
    Tomishige K, Asadullah M, Kunimori K (2004) Catal Today 89:389CrossRefGoogle Scholar
  8. 8.
    Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Appl Catal B 61:130CrossRefGoogle Scholar
  9. 9.
    Takanabe K, Aika K, Seshan K, Lefferts L (2004) Prepr Pap: Am Chem Soc Div Fuel Chem 49:807Google Scholar
  10. 10.
    Yakerson VI, Fedorovskaya EA, Klyachko-Gurvich AL, Rubinshtein AM (1961) Kinet Katal 2:828Google Scholar
  11. 11.
    Parida K, Mishra HK (1999) J Mol Catal A 139:73CrossRefGoogle Scholar
  12. 12.
    Henderson MA (2002) Surf Sci Rep 46:1 and literature cited thereinCrossRefGoogle Scholar
  13. 13.
    Wei J, Iglesia E (2004) J Phys Chem B 108:4094CrossRefGoogle Scholar
  14. 14.
    Bitter JH, Seshan K, Lercher JA (1998) J Catal 176:93CrossRefGoogle Scholar
  15. 15.
    Nagaoka K, Seshan K, Aika K, Lercher JA (2001) J Catal 197:34CrossRefGoogle Scholar
  16. 16.
    Hayek K, Kramer R, Paál Z (1997) Appl Catal A 162:1CrossRefGoogle Scholar
  17. 17.
    Bitter JH, Seshan K, Lercher JA (2000) Top Catal 10:295CrossRefGoogle Scholar
  18. 18.
    Scholten JJF, Pijpers AP, Hustings AML (1985) Catal Rev Sci Eng 27:151CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kazuhiro Takanabe
    • 1
  • Ken-Ichi Aika
    • 1
  • K. Seshan
    • 2
    Email author
  • Leon Lefferts
    • 2
  1. 1.Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyYokohamaJapan
  2. 2.Faculty of Science and Technology, Institute of Mechanics, Processes and Control Twente (IMPACT)University of TwenteEnschedeThe Netherlands

Personalised recommendations