Skip to main content
Log in

Steam Reforming of Ethanol Over Supported Co and Ni Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The ethanol steam reforming has been investigated over supported cobalt catalysts at atmospheric pressure. About 12% cobalt was supported on Al2O3, SiO2 and TiO2, and a commercial Ni/Al2O3 catalyst (G90B) was included for comparative purposes. The selectivity was found to depend strongly on the support, especially at low and medium temperatures. The initial activity of the cobalt catalysts correlated well with the metal dispersion. Acetaldehyde was an important C-containing product at low temperatures, whereas at high temperatures CO, CO2 and CH4 dominated the product spectrum. A significant production of ethene was observed, especially on the alumina-supported catalysts. The results are in agreement with a mechanism involving acetaldehyde as an intermediate in the steam reforming. At high temperatures (>550 °C) the conversion was complete and the product distribution approaches the equilibrium. The H2 yield approached 5 moles H2/mole ethanol converted, which is close to the maximum according to thermodynamic calculations. The alumina-supported catalysts (both Co and Ni) showed acceptable deactivation rates, but high carbon formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamson KA (2004) Energy Policy 32:1231

    Article  Google Scholar 

  2. Rostrup-Nielsen J (2001) PhysChem Chem Phys 3:283

    Article  CAS  Google Scholar 

  3. Deluga GA, Salge JR, Schmidt LD, Verykios XE (2004) Science 303:993

    Article  CAS  Google Scholar 

  4. Sheng P-Y, Yee A, Bowmaker GA, Idriss H (2002) J Catal 208:393

    Article  CAS  Google Scholar 

  5. Garcia EY, Laborde MA (1991) Int J Hydrogen Energy 16:307

    Article  CAS  Google Scholar 

  6. Aupretre F, Descorme C, Duprez D (2002) Catal Commun 3:263

    Article  CAS  Google Scholar 

  7. Fatsikostas AN, Kondarides DI, Verykios XE (2002) Catal Today 75:145

    Article  CAS  Google Scholar 

  8. Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F (2002) J Power Sources 108:53

    Article  CAS  Google Scholar 

  9. Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F (2003) Catal Commun 4:259

    Article  CAS  Google Scholar 

  10. Liguras DK, Goundani K, Verykios XE (2004) Int J Hydrogen Energy 29:419

    Article  CAS  Google Scholar 

  11. Sekine Y, Asai S, Urasaki K, Matsukata M, Kikuchi E, Kado S., Haga F (2005) Chem Lett (Jpn) 34:658

    Article  CAS  Google Scholar 

  12. Llorca J, Homs N, Ramirez de la Piscina P (2004) J Catal 227:556

    Article  CAS  Google Scholar 

  13. Haga F, Nakajima T, Yamashita K, Mishima S (1998) React Kinet Catal Lett 63:253

    Article  CAS  Google Scholar 

  14. Kaddouri A, Mazzocchia C (2004) Catal Commun 5:339

    Article  CAS  Google Scholar 

  15. Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) J Catal 231:405

    Article  Google Scholar 

  16. Goula MA, Kontou SK, Tsiakaras PE (2004) Appl Catal B: Environ 49:135

    Article  CAS  Google Scholar 

  17. Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223

    Article  CAS  Google Scholar 

  18. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sources 134:27

    Article  CAS  Google Scholar 

  19. Comas J, Marino F, Laborde M, Amadeo N (2004) Chem Eng J 98:61

    Article  CAS  Google Scholar 

  20. Fatsikostas AN, Verykios XE (2004) J Catal 225:439

    Article  CAS  Google Scholar 

  21. Abd El-Raady AA, Fouad NE, Mohamed MA, Halawy SA (2005) Monatsh Chem 133:1351

    Google Scholar 

  22. Cavallaro S (2000) Energy Fuels 14:1195

    Article  CAS  Google Scholar 

  23. Rostrup-Nielsen J, Trimm DL (1977) J Catal 48:155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Norwegian Research Council is acknowledged for financial support through the KOSK programme. O.A. Rokstad is thanked for assistance with thermodynamic calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edd A. Blekkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bichon, P., Haugom, G., Venvik, H.J. et al. Steam Reforming of Ethanol Over Supported Co and Ni Catalysts. Top Catal 49, 38–45 (2008). https://doi.org/10.1007/s11244-008-9061-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9061-8

Keywords

Navigation