Abstract
The multi-step conversion of sucrose to various C5-oxygenates and alkanes was achieved by integrating various homogeneous and heterogeneous catalytic systems. We have confirmed that the dehydration of sucrose to levulinic and formic acids is currently limited to about 30–40% in the presence of H2SO4, HCl, or Nafion NR50 in water. Performing the dehydration in the presence of a P(m-C6H4SO3Na)3 modified ruthenium catalyst under hydrogen resulted in the in situ conversion of levulinic acid to γ-valerolactone (GVL). Levulinic acid can be hydrogenated to GVL quantitatively by using P(m-C6H4SO3Na)3 modified ruthenium catalyst in water or Ru(acac)3/PBu3/NH4PF6 catalyst in neat levulinic acid. Formic acid can be used for the transfer hydrogenation of levulinic acid in water in the presence of [(η6-C6Me6)Ru(bpy)(H2O)][SO4] resulting in GVL and 1,4-pentanediol. The hydrogenation of levulinic acid or GVL can be performed to yield 1,4-pentanediol and/or 2-methyl-tetrahydrofuran (2-Me-THF). The hydrogenolysis of 2-Me-THF in the presence of Pt(acac)2 in CF3SO3H resulted in a mixture of alkanes. We have thus demonstrated that the conversion of carbohydrates to various C5-oxygenates and even to alkanes can be achieved by selecting the proper catalysts and conditions, which could provide a renewable platform for the chemical industry.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Deffeyes KS (1981) Beyond oil: the view from Hubbert’s peak. Farrar, Straus and Giroux, New York
Chow J, Kopp RJ, Portney PR (2003) Science 302:1528
Horváth IT, Anastas PT (2007) Chem Rev 107:2169
Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA (2001) Chem Rev 101:953
National Research Council (2004) The hydrogen economy: opportunities, costs, barriers and R&D needs. National Academies Press, Washington, DC
Lichtenthaler FW (1991) Carbohydrates as organic raw materials. VCH, Weinheim
Klass DL (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, San Diego; Ragauskas AJ, Williams CK, Davison BH, Britvosek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) Science 311:484
Huber GW, Cortright RD, Dumesic JA (2003) AngewChem Int Ed 43:1549
Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446
Moser J-E (2005) Nat Mater 4:723
(a) Horváth IT (2006) 10th Annual Green Chemistry and Engineering Conference, Washington, DC, July 26–30, 2006, abstract number 27; (b) Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238
Odor description: herbal, sweet, warm, cocoa, and woody—for additional information see Good Sence Company’s website for Parfumery Raw Materials Information Sheet (http://www.thegoodscentscompany.com/data/rw1024031.html)
Paul SF (1996) US Patent 5,697,987
Alternative Fuel Transportation Program (DOE) (1998) P-series fuels (Proposed Rules). Fed Regist 63:40202
Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411
Aas N, Li Y, Bowker M (1991) J Phys: Condens Matter 3:S281
Armaroli T, Busca G, Carlini C, Giuttari M, Raspolli AM, Galletti Sbrana G (2000) J Mol Cat A: Chem 151:233; Leonard RH (1956) Ind Eng Chem 48:1331; Schraufnagel RA, Rase HF (1975) Ind Eng Chem Prod Res Dev 14:40; Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185; Lourvanij K, Rorrer GL (1993) Ind Eng Chem Res 32:11
Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933; Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Green Chem 9:342
Horvat J, Klaic B, Metelko B, Sunjic V (1985) Tetrahedron Lett 26:2111
Mehdi H, Bodor A, Tuba R, Horváth IT (2003) Abstracts of Papers of the American Chemical Society, 226: U721 310-INOR, Part 1, September 2003; Mehdi H, Bodor A, Horváth IT (2004) Abstracts of Papers of the American Chemical Society, 227: 095-CELL, Part 1, March 2004
Joó F, Tóth Z, Beck MT (1977) Inorg Chim Acta 25:L61
Heinen AW, Papadogianakis G, Sheldon RA, Peters JA, van Bekkum H (1999) J Mol Cat A Chem 142:17
Broadbent HS, Selin TG (1963) J Org Chem 28:2343; Osakada K, Ikariya T, Yoshikawa S (1982) J Organomet Chem 231:79; Manzer LE (2003) US Patent 6,617,464
Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129; F. Joó (2001) In: James BR, van Leeuwen PWNM (eds) Aqueous organometallic catalysis. Kluwer Academic Press, Dordrecht, pp 102–106; Chaloner PA, Esteruelas MA, Joó F, Oro LA (1994) In: Ugo R, James BR (eds) Homogeneous hydrogenation. Kluwer Academic Press, Dordrecht, pp 87–114
Ogo S, Abura T, Watanabe Y (2002) Organometallics 21:2964
Hara Y, Inagaki H, Nishimura S, Wada K (1992) Chem Lett 1983
Christian RV, Brown HD, Hixon RM (1947) J Am Chem Soc 69:1961; Elliot DC, Frye JG (1999) US Patent 5,883,226
Acknowledgments
This work was funded by the Hungarian National Scientific Research Fund (T047207). The single crystal sapphire high-pressure NMR tubes were donated by ExxonMobil Research and Engineering Company, Annandale, NJ, USA. We are grateful to the Department of Chemistry at Princeton University for donating a Bruker AC 250 NMR Spectrometer and to the American Chemical Society for covering the shipping cost from Princeton to Budapest. The donation of the ReactIR 1000 instrument by Mettler Toledo Autochem Inc., is greatly appreciated.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mehdi, H., Fábos, V., Tuba, R. et al. Integration of Homogeneous and Heterogeneous Catalytic Processes for a Multi-step Conversion of Biomass: From Sucrose to Levulinic Acid, γ-Valerolactone, 1,4-Pentanediol, 2-Methyl-tetrahydrofuran, and Alkanes. Top Catal 48, 49–54 (2008). https://doi.org/10.1007/s11244-008-9047-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11244-008-9047-6