Skip to main content
Log in

The Physico-chemical Properties of Cinchona Alkaloids Responsible for their Unique Performance in Chiral Catalysis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The physico-chemical properties of cinchona alkaloids have been characterized in connection to their use for catalytic enantioselective conversions. Adding to the previous identification of their active site at the nitrogen atom in the quinuclidine ring and the chiral environment provided by the carbon centers of the neighboring alcohol linker, an argument is made here for the importance of the adoption of certain rotational conformations by those cinchona alkaloids in optimizing their chiral promotion. Because catalysis with cinchona alkaloids involves a liquid phase, there is a dynamic conformation isomerization process controlled by a number of factors having to do with the exact structure of the cinchona as well as with the nature of the solvent used and, in the case of heterogeneous catalysis, the presence of a solid surface. Solvents of intermediate polarity have been found to be the best for dissolving the cinchona, for establishing rapid adsorption equilibria with metal surfaces, and for promoting chiral catalysis. Protonation also leads to a dramatic change in performance, locking the cinchona molecule in a specific conformation held in place by the counter anion of the acid used, and modifying the chemical and biological activity of the system. Comparative studies with several cinchona indicate that molecular groups attached to peripheral positions also exert a great influence on the conformational and adsorption behavior of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wilairatana P, Krudsood S, Treeprasertsuk S, Chalermrut K, Looareesuwan S (2002) Arch Med Res 33:416

    Article  CAS  Google Scholar 

  2. Aviado DM, Salem H (1975) J Clin Pharmacol 15:477

    CAS  Google Scholar 

  3. Dewick PM (1997) Medicinal natural products: a biosynthetic approach. Wiley, Chichester

    Google Scholar 

  4. Hoffmann HMR, Frackenpohl J (2004) Eur J Org Chem 15:4293

    Article  CAS  Google Scholar 

  5. McCague R, Smith A (1999) Innov Pharm Technol 99:100

    CAS  Google Scholar 

  6. Francotte ER (2001) J Chromatogr A 906:379

    Article  CAS  Google Scholar 

  7. Kacprzak K, Gawroński J (2001) Synthesis 7:0961

    Article  Google Scholar 

  8. Baiker A (1997) J Mol Catal A 115:473

    Article  CAS  Google Scholar 

  9. Yoon TP, Jacobsen EN (2003) Science 299:1691

    Article  CAS  Google Scholar 

  10. Kolb HC, Sharpless KB (1998) In: Beller M, Bolm C (eds) Transition metals for organic synthesis, vol 2. Wiley-VCH, Weinheim, Germany, pp 243–260

    Chapter  Google Scholar 

  11. Ojima I (ed) (2000) Catalytic asymmetric synthesis. Wiley-VCH, New York

  12. Wynberg H (1986) Top Stereochem 16:87

    Article  CAS  Google Scholar 

  13. Taggi AE, Hafez AM, Wack H, Young B, Drury WJ III (2000) J Am Chem Soc 122:7831

    Article  CAS  Google Scholar 

  14. Chen Y, Tian S-K, Deng L (2000) J Am Chem Soc 122:9542

    Article  CAS  Google Scholar 

  15. Schwalm O, Weber J, Minder B, Baiker A (1994) Int J Quantum Chem 52:191

    Article  CAS  Google Scholar 

  16. Exner C, Pfaltz A, Studer M, Blaser H-U (2003) Adv Synth Catal 345:1253

    Article  CAS  Google Scholar 

  17. Bonalumi N, Vargas A, Ferri D, Bürgi T, Mallat T, Baiker A (2005) J Am Chem Soc 127:8467

    Article  CAS  Google Scholar 

  18. Karle JM, Bhattacharjee AK (1999) Bioorg Med Chem 7:1769

    Article  CAS  Google Scholar 

  19. Warhurst DC, Craig JC, Adagu IS, Meyer DJ, Lee SY (2003) Malaria J 2:1

    Article  Google Scholar 

  20. Dijkstra GDH, Kellogg RM, Wynberg H (1990) J Org Chem 55:6121

    Article  CAS  Google Scholar 

  21. Bürgi T, Baiker A (1998) J Am Chem Soc 120:12920

    Article  Google Scholar 

  22. Dijkstra GDH, Kellogg RM, Wynberg H, Svendsen JS, Marko I, Sharpless KB (1989) J Am Chem Soc 111:8069

    Article  CAS  Google Scholar 

  23. Altona C (1996) In: Grant DM, Morris R (eds) Encyclopedia of NMR. Wiley, New York, pp 4909–4923

    Google Scholar 

  24. Margitfalvi JL, Tfirst E (1999) J Mol Catal A 139:81

    Article  CAS  Google Scholar 

  25. Caner H, Biedermann PU, Agranat I (2003) Chirality 15:637

    Article  CAS  Google Scholar 

  26. Silva THA, Oliveira AB, De Almeida WB (1997) Bioorg Med Chem 5:353

    Article  CAS  Google Scholar 

  27. Dijkstra GDH, Kellogg RM, Wynberg H (1989) Recl Trav Chim Pays-Bas 108:195

    CAS  Google Scholar 

  28. Silva THA, Oliveira AB, De Almeida WB (1997) Struct Chem 8:95

    Article  CAS  Google Scholar 

  29. Silva THA, Oliveira AB, Dos Santos HF, De Almeida WB (2001) Struct Chem 12:431

    Article  CAS  Google Scholar 

  30. Frisch MJ et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  31. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  34. Ma Z, Zaera F (2005) J Phys Chem B 109:406

    Article  CAS  Google Scholar 

  35. Olsen RA, Borchardt D, Mink L, Agarwal A, Mueller LJ, Zaera F (2006) J Am Chem Soc 128:15594

    Article  CAS  Google Scholar 

  36. Ferri D, Bürgi T, Baiker A (1999) J Chem Soc Perkin Trans 2:1305

    Google Scholar 

  37. Larsen S, de Diego HL, Kozma D (1993) Acta Cryst B 49:310

    Article  Google Scholar 

  38. Ferri D, Bürgi T, Baiker A (2002) J Chem Soc Perkin Trans 2:437

    Google Scholar 

  39. Dolling UH, Davis P, Grabowski EJJ (1984) Am J Chem Soc 106:446

    Article  CAS  Google Scholar 

  40. Corey EJ, Xu F, Noe MC (1997) J Am Chem Soc 119:12414

    Article  CAS  Google Scholar 

  41. Nelson A (1999) Angew Chem Int Ed 38:1583

    Article  CAS  Google Scholar 

  42. Ferri D, T Bürgi, Borszeky K, Mallat T, Baiker A (2000) J Catal 193:139

    Article  CAS  Google Scholar 

  43. Vargas A, Ferri D, Baiker A (2005) J Catal 236:1

    Article  CAS  Google Scholar 

  44. Zaera F (2002) Int Rev Phys Chem 21:433

    Article  CAS  Google Scholar 

  45. Kubota J, Ma Z, Zaera F (2003) Langmuir 19:3371

    Article  CAS  Google Scholar 

  46. Wehrli JT, Baiker A, Monti DM, Blaser HU (1990) J Mol Catal 61:207

    Article  CAS  Google Scholar 

  47. Sutherland IM, Ibbotson A, Moyes RB, Wells PB (1990) J Catal 125:77

    Article  CAS  Google Scholar 

  48. Minder B, Schuerch M, Mallat T, Baiker A, Heinz T, Pfaltz A (1996) J Catal 160:261

    Article  CAS  Google Scholar 

  49. LeBlond C, Wang J, Andrews AT, Sun Y-K (2000) Top Catal 13:169

    Article  CAS  Google Scholar 

  50. Bartók M, Szöllösi G, Balázsik K, Bartók T (2002) J Mol Catal A 177:299

    Article  Google Scholar 

  51. Ma Z, Kubota J, Zaera F (2003) J Catal 219:404

    Article  CAS  Google Scholar 

  52. Orito Y, Imai S, Niwa S, Nguyen GH (1979) Yuki Gosei Kagaku Kyokaishi 37:173

    CAS  Google Scholar 

  53. Wehrli JT, Baiker A, Monti DM, Blaser HU, Jalett HP (1989) J Mol Catal 57:245

    Article  CAS  Google Scholar 

  54. Collier PJ, Hall TJ, Iggo JA, Johnston P, Slipszenko JA, Wells PB, Whyman R (1998) Chem Commun 1451

  55. Gamez A, Köhler J, Bradley J (1998) Catal Lett 55:73

    Article  CAS  Google Scholar 

  56. Nitta Y (2000) Top Catal 13:179

    Article  CAS  Google Scholar 

  57. Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45

    Article  CAS  Google Scholar 

  58. Ma Z, Lee I, Zaera F (2007) J Am Chem Soc 129:16083

    Article  CAS  Google Scholar 

  59. Ma Z, Zaera F (2006) J Am Chem Soc 128:16414

    Article  CAS  Google Scholar 

  60. Meier DM, Mallat T, Ferri D, Baiker A (2006) J Catal 244:260

    Article  CAS  Google Scholar 

  61. Meier DM, Ferri D, Mallat T, Baiker A (2007) J Catal 248:68

    Article  CAS  Google Scholar 

  62. Simons KE, Meheux PA, Ibbotson A, Wells PB (1993) Stud Surf Sci Catal 75:2317

    Article  CAS  Google Scholar 

  63. Balazs L, Mallat T, Baiker A (2005) J Catal 233:327

    Article  CAS  Google Scholar 

  64. Bürgi T, Zhou Z, Kunzle N, Mallat T, Baiker A (1999) J Catal 183:405

    Article  Google Scholar 

  65. Kubota J, Zaera F (2001) J Am Chem Soc 123:11115

    Article  CAS  Google Scholar 

  66. Ferri D, T Bürgi, Baiker A (2001) Chem Commun 1172

  67. Chu W, LeBlanc RJ, Williams CT (2002) Catal Commun 3:547

    Article  CAS  Google Scholar 

  68. Chu W, LeBlanc RJ, Williams CT, Kubota J, Zaera F (2003) J Phys Chem B 107:14365

    Article  CAS  Google Scholar 

  69. Ma Z, Lee I, Kubota J, Zaera F (2004) J Mol Catal A 216:199

    Article  CAS  Google Scholar 

  70. LeBlond C, Wang J, Liu J, Andrews AT, Sun Y-K (1999) J Am Chem Soc 121:4920

    Article  CAS  Google Scholar 

  71. Baiker A (1998) Spec Publ R Soc Chem 216:142

    CAS  Google Scholar 

  72. Vayner G, Houk KN, Sun Y-K (2004) J Am Chem Soc 126:199

    Article  CAS  Google Scholar 

  73. Ma Z, Zaera F (2004) Catal Lett 96:5

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this work has been provided by a grant from the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Additional information

Contribution for the proceedings of the 13th international symposium on relations between homogeneous and heterogeneous catalysis, Berkeley, July 16–20, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mink, L., Ma, Z., Olsen, R.A. et al. The Physico-chemical Properties of Cinchona Alkaloids Responsible for their Unique Performance in Chiral Catalysis. Top Catal 48, 120–127 (2008). https://doi.org/10.1007/s11244-008-9041-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9041-z

Keywords

Navigation