Advertisement

Topics in Catalysis

, Volume 47, Issue 1–2, pp 49–60 | Cite as

Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes on the Shape and Optical Properties

  • Ken-Tye Yong
  • Yudhisthira Sahoo
  • Mark T. Swihart
  • Paul M. Schneeberger
  • Paras N. PrasadEmail author
Original Paper

Abstract

Seeded growth of gold nanorods (NRs) has been accomplished in a micellar medium containing mixed surfactants or a high salt concentration. Cetyl trimethylamoniumbromide (CTAB) forms micelles upon which the growth of rod shaped gold nanoparticles occurs. AgNO3 is introduced into the growth solution to enhance the formation of NRs. The roles of non-ionic surfactants such as Tween and Triton, and of electrolytes such as sodium chloride and potassium chloride have been examined. As the concentration of these additives in the growth solution is increased, the aspect ratio of the NRs increases to a critical limit, after which it decreases again. Upon carefully controlling the content of Triton X-100 or Tween 20 in the growth solution, these non-ionic surfactants assisted in fine-tuning the shape of gold NRs (e.g. rectangular or “dogbone”). The growth pattern of the NRs fits into the model of a soft template formed by the mixture of CTAB and non-ionic surfactants.

Keywords

Gold Nanorod Plasmon resonance Surfactant Micelle Soft template 

References

  1. 1.
    Prasad PN (2004) Nanophotonics. Wiley–Interscience, New YorkGoogle Scholar
  2. 2.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  3. 3.
    Yu Y-Y, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664CrossRefGoogle Scholar
  4. 4.
    Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378CrossRefGoogle Scholar
  5. 5.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  6. 6.
    Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  7. 7.
    Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2:668–671CrossRefGoogle Scholar
  8. 8.
    Hsieh S, Meltzer S, Wang CRC, Requicha AAG, Thompson ME, Koel BE (2002) Imaging and manipulation of gold nanorods with an atomic force microscope. J Phys Chem B 106:231–234CrossRefGoogle Scholar
  9. 9.
    Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22CrossRefGoogle Scholar
  10. 10.
    Katz E, Willner I (2004) Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43:6042–6108CrossRefGoogle Scholar
  11. 11.
    Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523CrossRefGoogle Scholar
  12. 12.
    Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18:922–927CrossRefGoogle Scholar
  13. 13.
    Imura K, Nagahara T, Okamoto H (2004) Plasmon mode imaging of single gold nanorods. J Am Chem Soc 126:12730–12731CrossRefGoogle Scholar
  14. 14.
    Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233CrossRefGoogle Scholar
  15. 15.
    Ah CS, Hong SD, Jang D-J (2001) Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B 105:7871–7873CrossRefGoogle Scholar
  16. 16.
    Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  17. 17.
    Zhu YJ, Hu XL (2003) Microwave-polyol preparation of single-crystalline gold nanorods and nanowires. Chem Lett 32:1140–1141CrossRefGoogle Scholar
  18. 18.
    Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and N of the seed. Chem Mater 16:3633–3640CrossRefGoogle Scholar
  19. 19.
    Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330CrossRefGoogle Scholar
  20. 20.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  21. 21.
    Obare S, Jana NR, Murphy CJ (2001) Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603CrossRefGoogle Scholar
  22. 22.
    Schönenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krüger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505CrossRefGoogle Scholar
  23. 23.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  24. 24.
    Pérez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579CrossRefGoogle Scholar
  25. 25.
    Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070CrossRefGoogle Scholar
  26. 26.
    Ruiz CC, Aguiar J (2000) Interaction, stability, and microenvironmental properties of mixed micelles of Triton X100 and n-alkyltrimethylammonium bromides: influence of alkyl chain length. Langmuir 16:7946–7953CrossRefGoogle Scholar
  27. 27.
    Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416CrossRefGoogle Scholar
  28. 28.
    Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393CrossRefGoogle Scholar
  29. 29.
    Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRefGoogle Scholar
  30. 30.
    Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672CrossRefGoogle Scholar
  31. 31.
    Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  32. 32.
    Ghosh SK, Kundu S, Mandal M, Nath S, Pal T (2003) Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J Nanoparticle Res 5:577–587CrossRefGoogle Scholar
  33. 33.
    Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanoparticle Res 3:257–261CrossRefGoogle Scholar
  34. 34.
    Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882CrossRefGoogle Scholar
  35. 35.
    Evans DF (1988) Self-organization of amphiphiles. Langmuir 4:3–12CrossRefGoogle Scholar
  36. 36.
    Mosquera V, del Rio JM, Attwood D, Garcia M, Jones MN, Prieto G, Suarez MJ, Sarmiento F (1998) A study of the aggregation behavior of hexyltrimethylammonium bromide in aqueous solution. J Colloid Interf Sci 206:66–76CrossRefGoogle Scholar
  37. 37.
    Aswal VK, Goyal PS (1998) Mixed micelles of alkyltrimethylammonium halides A small-angle neutron scattering study. Physica B 245:73–80CrossRefGoogle Scholar
  38. 38.
    Yuan HZ, Zhao S, Cheng GZ, Zhang L, Miao XJ, Mao SZ, Yu JY, Shen LF, Du YR (2001) Mixed micelles of Triton X-100 and cetyl trimethylammonium bromide in aqueous solution studied by 1H NMR. J Phys Chem B 105:4611–4615CrossRefGoogle Scholar
  39. 39.
    Razavizadeh BM, Mousavi-Khoshdel M, Gharibi H, Behjatmanesh-Ardakani R, Javadian S, Sohrabi B (2004) Thermodynamic studies of mixed ionic/nonionic surfactant systems. J Colloid Interf Sci 276:197–207CrossRefGoogle Scholar
  40. 40.
    Cappelaere E, Cressely R (1998) Rheological behavior of an elongated micellar solution at low and high salt concentrations. Colloid Polym Sci 276:1050–1056CrossRefGoogle Scholar
  41. 41.
    Ionescu LG, Do Aido THM, Kid BJ (1989) Aggregation of cetyltrimethylammonium bromide (CTAB) in aqueous solutions containing sodium chloride. Bol Soc Chil Quim 35:105–111Google Scholar
  42. 42.
    Olsson U, Soderman O, Guering P (1986) Characterization of micellar aggregates in viscoelastic surfactant solutions—a nuclear-magnetic-resonance and light-scattering study. J Phys Chem 90:5223–5232CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ken-Tye Yong
    • 1
    • 2
  • Yudhisthira Sahoo
    • 1
    • 3
  • Mark T. Swihart
    • 1
    • 2
  • Paul M. Schneeberger
    • 1
  • Paras N. Prasad
    • 1
    • 3
    Email author
  1. 1.Institute for Lasers, Photonics and BiophotonicsUniversity at Buffalo, The State University of New YorkBuffaloUSA
  2. 2.Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New YorkBuffaloUSA
  3. 3.Department of ChemistryUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations