Topics in Catalysis

, Volume 46, Issue 3–4, pp 386–401 | Cite as

Continuum and Quantum-Chemical Modeling of Oxygen Reduction on the Cathode in a Solid Oxide Fuel Cell

  • YongMan Choi
  • David S. Mebane
  • Jeng-Han Wang
  • Meilin LiuEmail author
Original Paper


Solid oxide fuel cells (SOFCs) have several advantages over other types of fuels cells such as high-energy efficiency and excellent fuel flexibility. To be economically competitive, however, new materials with extraordinary transport and catalytic properties must be developed to dramatically improve the performance while reducing the cost. This article reviews recent advancements in understanding oxygen reduction on various cathode materials using phenomenological and quantum chemical approaches in order to develop novel cathode materials with high catalytic activity toward oxygen reduction. We summarize a variety of results relevant to understanding the interactions between O2 and cathode materials at the molecular level as predicted using quantum-chemical calculations and probed using in situ surface vibrational spectroscopy. It is hoped that this in-depth understanding may provide useful insights into the design of novel cathode materials for a new generation of SOFCs.


Solid oxide fuel cells Oxygen reduction Continuum modeling Quantum-chemical calculations 



This work was supported by DOE-NETL University Coal Program (Grant No. DE-FG26-06NT42735) and DOE Basic Energy Science (Grant No. DE-FG02-06ER15837) and was partly performed using the MSCF in EMSL at Pacific Northwest National Laboratory (PNNL), a national scientific user facility sponsored by the U.S. DOE and OBER.


  1. 1.
    Dresselhaus MS, Thomas IL (2001) Nature (London, United Kingdom) 414:332Google Scholar
  2. 2.
    Steele BCH, Heinzel A (2001) Nature (London, United Kingdom) 414:345Google Scholar
  3. 3.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier Science, AmsterdamGoogle Scholar
  4. 4.
    Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier ScienceGoogle Scholar
  5. 5.
    Minh NQ (2004) Solid State Ionics 174:271Google Scholar
  6. 6.
    Singhal SC (2002) Solid State Ionics 152:405Google Scholar
  7. 7.
    Minh NQ (1993) J Am Ceram Soc 76:563Google Scholar
  8. 8.
    Singh P, Minh NQ (2004) Int J Appl Ceram Technol 1:5CrossRefGoogle Scholar
  9. 9.
    Yamanoto O (2000) Electrochim Acta 45:2423Google Scholar
  10. 10.
  11. 11.
    Xia C, Liu M (2002) Adv Mater 14:521Google Scholar
  12. 12.
    Zuo C, Zha S, Hatano M, Uchiyama M, Liu M (2006) Adv Mater 18:3318Google Scholar
  13. 13.
    Adler SB (2004) Chem Rev 104:4741Google Scholar
  14. 14.
    Mebane DS, Liu M (2006) J Solid State Electrochem 10:575Google Scholar
  15. 15.
    Pizzini S (1973) In: Gool Wv (ed) Fast ion transport in solids. North-Holland, p 461Google Scholar
  16. 16.
    Liu M, Winnick J (1999) Solid State Ionics 118:11Google Scholar
  17. 17.
    Endo A, Ihara M, Komiyama H, Yamada K (1996) Solid State Ionics 86:1191Google Scholar
  18. 18.
    Endo A, Fukunaga H, Wen C, Yamada K (2000) Solid State Ionics 135:353Google Scholar
  19. 19.
    Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara Z (1997) J Electrochem Soc 144:1362Google Scholar
  20. 20.
    Mizusaki J, Saito T, Tagawa H (1996) J Electrochem Soc 143:3065Google Scholar
  21. 21.
    Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656Google Scholar
  22. 22.
    Endo A, Wada S, Wen CJ, Komiyama H, Yamada K (1998) J Electrochem Soc 145:L35Google Scholar
  23. 23.
    Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530Google Scholar
  24. 24.
    Adler SB (1998) Solid State Ionics 111:125Google Scholar
  25. 25.
    Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Solid State Ionics 177:1071Google Scholar
  26. 26.
    Lauret H, Hammou A (1996) J Eur Ceram Soc 16:447Google Scholar
  27. 27.
    Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741Google Scholar
  28. 28.
    Kuznecov M, Otschik P, Trofimenko N, Eichler K (2004) Russ J Electrochem 40:1162Google Scholar
  29. 29.
    Jiang SP, Love JG (2001) Solid State Ionics 138:183Google Scholar
  30. 30.
    Jiang SP, Love JG (2003) Solid State Ionics 158:45Google Scholar
  31. 31.
    Kuo JH, Anderson HU, Sparlin DM (1989) J Solid State Chem 83:52Google Scholar
  32. 32.
    Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102Google Scholar
  33. 33.
    Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163Google Scholar
  34. 34.
    Poulsen FW (2000) Solid State Ionics 129:145Google Scholar
  35. 35.
    Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67CrossRefGoogle Scholar
  36. 36.
    van Hassel BA, Kawada T, Sakai N, Yokokawa H, Dokiya M, Bouwmeester HJM (1993) Solid State Ionics 66:295Google Scholar
  37. 37.
    Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokiya M, Naraya K, Sasamoto T, Inaba H, Hashimoto T (2000) Solid State Ionics 132:167Google Scholar
  38. 38.
    Kamata H, Yonemura Y, Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1995) J Phys Chem Solids 56:943Google Scholar
  39. 39.
    Kawada T, Masuda K, Suzuki J, Kaimai A, Kawamura K, Nigara Y, Mizusaki J, Yugami H, Arashi H, Sakai N, Yokokawa H (1999) Solid State Ionics 121:271Google Scholar
  40. 40.
    Horita T, Yamaji K, Ishikawa M, Sakai N, Yokokawa H, Kawada T, Kato T (1998) J Electrochem Soc 145:3196Google Scholar
  41. 41.
    Bouwmeester HJM, Den Otter MW, Boukamp BA (2004) J Solid State Electrochem 8:599Google Scholar
  42. 42.
    De Souza RA, Kilner JA (1998) Solid State Ionics 106:175Google Scholar
  43. 43.
    De Souza RA, Kilner JA (1999) Solid State Ionics 126:153Google Scholar
  44. 44.
    De Souza RA, Kilner JA, Walker JF (2000) Mater Lett 43:43Google Scholar
  45. 45.
    Huang KQ, Goodenough JB (2001) J Electrochem Soc 148:E203Google Scholar
  46. 46.
    Kilner JA, DeSouza RA, Fullarton IC (1996) Solid State Ionics 86:703Google Scholar
  47. 47.
    Lane JA, Benson SJ, Waller D, Kilner JA (1999) Solid State Ionics 121:201Google Scholar
  48. 48.
    Lane JA, Kilner JA (2000) Solid State Ionics 136:997Google Scholar
  49. 49.
    Zipprich W, Waschilewski S, Rocholl F, Wiemhofer HD (1997) Solid State Ionics 101:1015Google Scholar
  50. 50.
    Zipprich W, Wiemhofer HD (2000) Solid State Ionics 135:699Google Scholar
  51. 51.
    Brumleve TR, Buck RP (1978) J Electroanal Chem 90:1Google Scholar
  52. 52.
    Brumleve TR, Buck RP (1981) J Electroanal Chem 126:73Google Scholar
  53. 53.
    Bisquert J, Gratzel M, Wang Q, Fabregat-Santiago F (2006) J Phys Chem B 110:11284Google Scholar
  54. 54.
    Jamnik J, Maier J (2001) Phys Chem Chem Phys 3:1668Google Scholar
  55. 55.
    Coffey GW, Pederson LR, Rieke PC (2003) J Electrochem Soc 150:A1139Google Scholar
  56. 56.
    Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554Google Scholar
  57. 57.
    Deseure J, Bultel Y, Dessemond L, Siebert E (2005) Electrochim Acta 50:2037Google Scholar
  58. 58.
    Svensson AM, Sunde S, Nisancioglu K (1997) J Electrochem Soc 144:2719Google Scholar
  59. 59.
    Svensson AM, Sunde S, Nisancioglu K (1998) J Electrochem Soc 145:1390Google Scholar
  60. 60.
    Williford RE, Singh P (2004) J Power Sources 128:45Google Scholar
  61. 61.
    Newman J, Thomas-Alyea KE (2004) Electrochemical systems. Wiley-Interscience, HobokenGoogle Scholar
  62. 62.
    Fleig J (2002) J Power Sources 105:228Google Scholar
  63. 63.
    Fleig J, Pham P, Sztulzaft P, Maier J (1998) Solid State Ionics 115:739Google Scholar
  64. 64.
    Herbstritt D, Weber A, Ivers-Tiffee E (2001) J Eur Ceram Soc 21:1813Google Scholar
  65. 65.
    Fleig J, Maier J (2004) J Eur Ceram Soc 24:1343Google Scholar
  66. 66.
    Koep E, Mebane DS, Das R, Compson C, Liu M (2005) Electrochem Solid State Lett 8:A592Google Scholar
  67. 67.
    Brichzin V, Fleig J, Habermeier HU, Cristiani G, Maier J (2002) Solid State Ionics 152:499Google Scholar
  68. 68.
    Mebane DS, Liu Y, Liu M (2007) J Electrochem Soc 154:A421Google Scholar
  69. 69.
    Liu M, Lu X, Faguy P (2003) Proceedings of solid oxide fuel cells VIIIGoogle Scholar
  70. 70.
    Lu X, Faguy PW, Liu M (2003) Proceedings of solid-state ionic devices IIIGoogle Scholar
  71. 71.
    Lu X, Faguy PW, Liu M (2002) J Electrochem Soc 149:A1293Google Scholar
  72. 72.
    Bockris JOM, Khan SUM (1993) Surface electrochemistry. Plenum, New YorkGoogle Scholar
  73. 73.
    Broadbelt LJ, Snurr RQ (2000) Appl Catal A 200:23Google Scholar
  74. 74.
    Ruette F (ed) (1992) Quantum chemistry approaches to Chemisorption and Heterogenous catalysis. Kluwer Academic Publisher, BostonGoogle Scholar
  75. 75.
    Santen RAv (1991) Theoretical Heterogenous catalysis. World Scientific, SingaporeGoogle Scholar
  76. 76.
    Hermse CGM, van Bavel AP, Koper MTM, Lukkien JJ, van Santen RA, Jansen APJ (2004) Surf Sci 572:247Google Scholar
  77. 77.
    Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK (2001) J Am Chem Soc 123:8404Google Scholar
  78. 78.
    Linic S, Barteau MA (2004) J Am Chem Soc 126:8086Google Scholar
  79. 79.
    Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489Google Scholar
  80. 80.
    Neurock M (2003) J Catal 216:73Google Scholar
  81. 81.
    Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskøv JK (2003) J Phys Chem B 107:11013Google Scholar
  82. 82.
    Gokhale AA, Kandoi S, Greeley JP, Mavrikakis M, Dumesic JA (2004) Chem Eng Sci 59:4679Google Scholar
  83. 83.
    Levine IN (1991) Quantum chemistry. Prentice-Hall Inc., NJGoogle Scholar
  84. 84.
    Lowe JP (1993) Quantum chemistry. Academic PressGoogle Scholar
  85. 85.
    Atkins PW (1983) Molecular quantum mechanics. Oxford University PressGoogle Scholar
  86. 86.
    Harrison WA (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, Inc., NYGoogle Scholar
  87. 87.
    Szabo A, Ostlund NS (1982) Mordern quantum chemisty: introduction to advanced electronic structure theory. MacMillan, NYGoogle Scholar
  88. 88.
    Jensen F (1999) Introduction to computational chemistry. John Wiley & Sons, Inc., New YorkGoogle Scholar
  89. 89.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley & Sons, Inc., New YorkGoogle Scholar
  90. 90.
    Born M, Oppenheimer JR (1927) Ann Physik 84:457Google Scholar
  91. 91.
    Greeley J, Norskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319Google Scholar
  92. 92.
    From the beginning in LatinGoogle Scholar
  93. 93.
    Pople JA, Santry DP, Segal GA (1965) J Chem Phys 43:S129Google Scholar
  94. 94.
    Pople JA, Nesbet RK (1954) J Chem Phys 22:571Google Scholar
  95. 95.
    Roothaan CCJ (1960) Rev Mod Phys 32:179Google Scholar
  96. 96.
    Binkley JS, Pople JA, Dobosh PA (1074) Mol Phys 28:1423Google Scholar
  97. 97.
    Møller C, Plesset MS (1934) Phys Rev 46:618Google Scholar
  98. 98.
    Bartlett RJ (1989) J Phys Chem 93:1697Google Scholar
  99. 99.
    Roos BO (1987) Adv Chem Phys 69:399Google Scholar
  100. 100.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133Google Scholar
  101. 101.
    Shi Z, Zhang JJ, Liu ZS, Wang HJ, Wilkinson DP (2006) Electrochimica Acta 51:1905Google Scholar
  102. 102.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:B864Google Scholar
  103. 103.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671Google Scholar
  104. 104.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244Google Scholar
  105. 105.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  106. 106.
    Jacob T, Goddard WA III (2006) ChemPhysChem 7:992Google Scholar
  107. 107.
    Choi YM, Compson C, Lin MC, Liu M (2007) J Alloys Comp 427:25Google Scholar
  108. 108.
    Choi YM, Compson C, Lin MC, Liu M (2006) Chem Phys Lett 421:179Google Scholar
  109. 109.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Kitao YH, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford CTGoogle Scholar
  110. 110.
    Werner H-J, Knowles PJ, Schütz M, Lindh R, Celani P, Korona T, Rauhut G, Manby FR, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO 2006.1Google Scholar
  111. 111.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347Google Scholar
  112. 112.
    CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001Google Scholar
  113. 113.
    Kresse G, Hafner J (1993) Phys Rev B 47:558Google Scholar
  114. 114.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169Google Scholar
  115. 115.
    Choi YM, Abernathy H, Chen H-T, Lin MC, Liu M (2006) ChemPhysChem 7:1957Google Scholar
  116. 116.
    Wang JH, Liu M, Lin MC (2006) Solid State Ionics 177:939Google Scholar
  117. 117.
    Choi YM, Mebane DS, Lin MC, Liu M (2007) Chem Mater 19:1690Google Scholar
  118. 118.
    Lamas EJ, Balbuena PB (2006) J Chem Theory Comput 2:1388Google Scholar
  119. 119.
    Xu Y, Ruban AV, Mavrikakis M (2004) J Am Chem Soc 126:4717Google Scholar
  120. 120.
    Roques J, Anderson AB (2004) J Electrochem Soc 151:E340Google Scholar
  121. 121.
    Balbuena PB, Altomare D, Vadlamani N, Bingi S, Agapito LA, Seminario JM (2004) J Phys Chem A 108:6378Google Scholar
  122. 122.
    Wang Y, Balbuena Perla B (2005) J Phys Chem B 109:18902Google Scholar
  123. 123.
    Panchenko A, Koper MTM, Shubina TE, Mitchell SJ, Roduner E (2004) J Electrochem Soc 151:A2016Google Scholar
  124. 124.
    Jacob T, Goddard WA III (2004) J Phys Chem B 108:8311Google Scholar
  125. 125.
    Jacob T, Merinov BV, Goddard WA III (2004) Chem Phys Lett 385:374Google Scholar
  126. 126.
    Jacob T, Muller RP, Goddard WA III (2003) J Phys Chem B 107:9465Google Scholar
  127. 127.
    Fleig J (2003) Annu Rev Mater Res 33:361Google Scholar
  128. 128.
    Horita T, Yamajia K, Sakaia N, Xionga Y, Katoa T, Yokokawa H, Kawada T (2002) J Power Sources 106:224Google Scholar
  129. 129.
    Radhakrishnan R, Virkar AV, Singhal SC (2005) J Electrochem Soc 152:A927Google Scholar
  130. 130.
    Hammer B, Norskov JK (2000) Adv Catal 45:71Google Scholar
  131. 131.
    Clarke S, Nekovee M, de Boer PK, Inglesfield JE (1998) J Phys 10:7777Google Scholar
  132. 132.
    Feibelman P (2001) Phys Rev B 64:125403/1Google Scholar
  133. 133.
    Hyman MP, Medlin JW (2006) J Phys Chem B 110:15338Google Scholar
  134. 134.
    Bogicevic A, Stromquist J, Lundqvist BI (1998) Phys Rev B 57:R4289Google Scholar
  135. 135.
    Eichler A, Hafner J (1997) Phys Rev Lett 79:4481Google Scholar
  136. 136.
    Eichler A, Mittendorfer F, Hafner J (2000) Phys Rev B 62:4744Google Scholar
  137. 137.
    Gland JL, Korchak VN (1978) Surf Sci 75:733Google Scholar
  138. 138.
    Gland JL (1980) Surf Sci 93:487Google Scholar
  139. 139.
    Gland JL, Sexton BA, Fisher GB (1980) Surf Sci 95:587Google Scholar
  140. 140.
    Li T, Balbuena PB (2003) Chem Phys Lett 367:439Google Scholar
  141. 141.
    Gambardella P, Sljivancanin Z, Hammer B, Blanc M, Kuhnke K, Kern K (2001) Phys Rev Lett 87:056103/1Google Scholar
  142. 142.
    Luntz AC, Grimblot J, Fowler DE (1989) Phys Rev B 39:12903Google Scholar
  143. 143.
    Nolan PD, Lutz BR, Tanake PL, Davis JE, Mullins CB (1998) Phys Rev Lett 81:3179Google Scholar
  144. 144.
    Nolan PD, Lutz BR, Tanake PL, Davis JE, Mullins CB (1999) J Chem Phys 111:3696Google Scholar
  145. 145.
    Outka DA, Stohr J, Jark W, Stevens P, Solomon J, Madix RJ (1987) Phys Rev B 35:4119Google Scholar
  146. 146.
    Sljivancanin Z, Hammer B (2002) Surf Sci 515:235Google Scholar
  147. 147.
    Wurth W, Stohr J, Feulner P, Pan X, Bauchspiess KR, Baba Y, Hudel E, Rocker G, Menzel D (1990) Phys Rev Lett 65:2426Google Scholar
  148. 148.
    Barth JV, Zambelli T, Wintterlin J, Schuster R, Ertl G (1997) Phys Rev B 55:12902Google Scholar
  149. 149.
    Gravil PA, Bird DM, White JA (1996) Phys Rev Lett 77:3933Google Scholar
  150. 150.
    Gravil PA, White JA, Bird DM (1996) Surf Sci 352:248Google Scholar
  151. 151.
    Nakatsuji H, Nakai H (1993) J Chem Phys 98:2423Google Scholar
  152. 152.
    Li W-X, Stampfl C, Scheffler M (2003) Phys Rev B 67:045408/1Google Scholar
  153. 153.
    Campbell CT (1985) Surf Sci 157:43Google Scholar
  154. 154.
    Raukema A, Butler DA, Box FMA, Kleyn AW (1996) Surf Sci 347:151Google Scholar
  155. 155.
    Salazar MR, Saravanan C, Kress JD, Redondo A (2000) Surf Sci 449:75Google Scholar
  156. 156.
    Sun Q, Wang Y, Fan K, Deng J (2000) Surf Sci 459:213Google Scholar
  157. 157.
    Vattuone L, Rocca M, Valbusa U (1994) Surf Sci 314:L904Google Scholar
  158. 158.
    Xu Y, Greeley J, Mavrikakis M (2005) J Am Chem Soc 127:12823Google Scholar
  159. 159.
    Bader RFW (1994) Atoms in molecules—A quantum theory. Clarendon Press, OxfordGoogle Scholar
  160. 160.
    Bader RFW, Beddall PM (1972) J Chem Phys 56:3320Google Scholar
  161. 161.
    Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354Google Scholar
  162. 162.
  163. 163.
    Liu Z-P, Jenkins SJ, King DA (2004) Phys Rev Lett 93:156102Google Scholar
  164. 164.
    Liu Z-P, Jenkins SJ, King DA (2005) Phys Rev Lett 94:196102Google Scholar
  165. 165.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935Google Scholar
  166. 166.
    Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286Google Scholar
  167. 167.
    Nagy A, Mestl G, Ruhle T, Weinberg G, Schlogl R (1998) J Catal 179:548Google Scholar
  168. 168.
    Nagy AJ, Mestl G (1999) Appl Catal A 188:337Google Scholar
  169. 169.
    Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlogl R (1999) J Catal 182:417Google Scholar
  170. 170.
    White MG, Beuhler RJ (2004) J Chem Phys 120:2445Google Scholar
  171. 171.
    Feibelman PJ, Esch S, Michely T (1996) Phys Rev Lett 77:2257Google Scholar
  172. 172.
    Stipe BC, Rezaei MA, Ho W, Gao S, Persson M, Lundqvist BI (1997) Phys Rev Lett 78:4410Google Scholar
  173. 173.
    Wintterlin J, Schuster R, Ertl G (1996) Phys Rev Lett 77:123Google Scholar
  174. 174.
    Norby P, Krogh AIG, Krogh Andersen E, Andersen NH (1995) J Solid State Chem 119:191Google Scholar
  175. 175.
    Iliev MN, Abrashev MV, Lee HG, Popov VN, Sun YY, Thomsen C, Meng RL, Chu CW (1998) Phys Rev B 57:2872Google Scholar
  176. 176.
    Podobedov VB, Weber A, Romero DB, Rice JP, Drew HD (1998) Phys Rev B 58:43Google Scholar
  177. 177.
    Pickett WE, Singh DJ (1996) Phys Rev B 53:1146Google Scholar
  178. 178.
    Su YS, Kaplan TA, Mahanti SD, Harrison JF (2000) Phys Rev B 61:1324Google Scholar
  179. 179.
    Nicastro M, Patterson CH (2002) Phys Rev B 65:205111/1Google Scholar
  180. 180.
    Munoz D, Harrison NM, Illas F (2004) Phys Rev B 69:085115/1CrossRefGoogle Scholar
  181. 181.
    Kotomin EA, Heifets E, Maier J, Goddard WA III (2003) Phys Chem Chem Phys 5:4180Google Scholar
  182. 182.
    Evarestov RA, Kotomin EA, Heifets E, Maier J, Borstel G (2003) Solid State Commun 127:367Google Scholar
  183. 183.
    Kotomin EA, Evarestov RA, Mastrikov YA, Maier J (2005) Phys Chem Chem Phys 7:2346Google Scholar
  184. 184.
    Evarestov RA, Kotomin EA, Fuks D, Felsteiner J, Maier J (2004) Appl Surf Sci 238:457Google Scholar
  185. 185.
    Fuks D, Dorfman S, Felsteiner J, Bakaleinikov L, Gordon A, Kotomin EA (2004) Solid State Ionics 173:107Google Scholar
  186. 186.
    Fuks D, Bakaleinikov L, Kotomin EA, Felsteiner J, Gordon A, Evarestov RA, Gryaznov D, Maier J (2006) Solid State Ionics 177:217Google Scholar
  187. 187.
    Woodley SM, Catlow CRA, Gale JD, Battle PD (2000) Chem Commun 1879Google Scholar
  188. 188.
    Islam MS (2000) J Mater Chem 10:1027Google Scholar
  189. 189.
    Islam MS (2002) Solid State Ionics 154:75Google Scholar
  190. 190.
    Kovaleva NN, Gavartin JL, Shluger AL, Boris AV, Stoneham AM (2002) J Exp Theor Phys 94:178Google Scholar
  191. 191.
    Blöchl P (1994) Phys Rev B 17:953Google Scholar
  192. 192.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188Google Scholar
  193. 193.
    Wang W, Zhang H-B, Lin G-D, Xiong Z-T (2000) Appl Catal B 24:219Google Scholar
  194. 194.
    Choi YM, Lin MC, Liu M (2007) Angew Chem, Int Ed 46:7214Google Scholar
  195. 195.
    Nosé S (1984) Mol Phys 52:255Google Scholar
  196. 196.
    Podobedov VB, Weber A, Romero DB, Rice JP, Drew HD (1998) Solid State Commun 105:589Google Scholar
  197. 197.
    Koep E, Compson C, Liu M, Zhou ZP (2005) Solid State Ionics 176:1Google Scholar
  198. 198.
    Zha S, Moore A, Abernathy H, Liu M (2004) J Electrochem Soc 151:A1128Google Scholar
  199. 199.
    Zha S, Rauch W, Liu M (2004) Solid State Ionics 166:241Google Scholar
  200. 200.
    Trovarelli A (ed) (2000) Catalysis by ceria and related materials. Imperial College Press, LondonGoogle Scholar
  201. 201.
    Ghosh P, Sundaram A, Venkatasubramanian V, Caruthers JM (2000) Comput Chem Eng 24:685Google Scholar
  202. 202.
    Holland JH (1975) Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann ArborGoogle Scholar
  203. 203.
    Chakraborti N (2004) Int Mater Reviews 49:246Google Scholar
  204. 204.
    Ho K-M, Shvartsburg AA, Pan B, Lu Z-Y, Wang C-Z, Wacker JG, Fye JL, Jarrold MF (1998) Nature 392:582Google Scholar
  205. 205.
    Chakraborti N, Mishra P, Erkoc S (2004) J Phase Equilib Diffusion 25:16Google Scholar
  206. 206.
    Klimeck G, Bowen RC, Boykin TB, Salazar-Lazaro C, Cwik TA, Stoica A (2000) Superlattices Microstruct 27:77Google Scholar
  207. 207.
    Deaven DM, Ho KM (1995) Phys Rev Lett 75:288Google Scholar
  208. 208.
    Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Nature Mater 4:391Google Scholar
  209. 209.
    Jóhannesson G.H., Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Phys Rev Lett 88:255506/1Google Scholar
  210. 210.
    Engstrom JR, Weinberg WH (2000) AIChE J 46:2Google Scholar
  211. 211.
    Koinuma H, Takeuchi I (2004) Nature Mater 3:429Google Scholar
  212. 212.
    Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735Google Scholar
  213. 213.
    Fleischauer MD, Hatchard TD, Rockwell GP, Topple JM, Trussler S, Jericho SK, Jericho MH, Dahn JR (2003) J Electrochem Soc 150:A1465Google Scholar
  214. 214.
    Liu M, Winnick J (1997) J Electrochem Soc 144:1881Google Scholar
  215. 215.
    Han X, Zhang Y, Xu H (2003) Chem Phys Lett 378:269Google Scholar
  216. 216.
    Han X, Zhang Y, Xu H (2004) J Comp Chem 25:968Google Scholar
  217. 217.
    Reuter K, Scheffer M (2001) Phys Rev B 65:035406/1Google Scholar
  218. 218.
    Cortright RD, Dumesic JA (2002) Adv Catal 46:161Google Scholar
  219. 219.
    Laidler KJ (1987) Chemical kinetics. Harper and Row, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • YongMan Choi
    • 1
  • David S. Mebane
    • 1
  • Jeng-Han Wang
    • 1
  • Meilin Liu
    • 1
    Email author
  1. 1.Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations