Skip to main content
Log in

Time-of-flight studies on catalytic model reactions

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Time-of-flight spectroscopy (TOF) and REMPI-TOF (resonance enhanced multi-photon ionization-TOF) were applied to measure the angular and translational energy distribution, as well as the internal state resolved energy distribution of desorption and reaction products on some model systems. Desorption of hydrogen and deuterium from clean and modified Pd(111) surfaces was studied, where the palladium sample was part of a permeation source. Water formation by reaction of oxygen with hydrogen on palladium was investigated by using different types of hydrogen supply: molecular H2 exposure and atomic H exposure from the gas phase, as well as H exposure by permeating hydrogen. Vanadium oxide nanostructures on Pd(111) were prepared and the influence on D2 desorption and D2O production was investigated with the permeation technique. Additionally, deuterium desorption from sulfur and oxygen covered V(111) and V(100) surfaces was studied by TOF and REMPI-TOF spectroscopy. From the TOF spectra information concerning the reaction and desorption dynamics (activation barriers) could be gained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Comsa R. David (1985) Surf. Sci. Rep. 5 145 Occurrence Handle10.1016/0167-5729(85)90009-3 Occurrence Handle1:CAS:528:DyaL28Xls1OqsA%3D%3D

    Article  CAS  Google Scholar 

  2. T. Matsushima (2003) Surf. Sci. Rep. 52 1 Occurrence Handle10.1016/j.surfrep.2003.09.002 Occurrence Handle1:CAS:528:DC%2BD3sXpt1GgurY%3D

    Article  CAS  Google Scholar 

  3. W. Willigen ParticleVan (1968) Phys. Lett. 28A 80

    Google Scholar 

  4. M. Balooch R.E. Stickney (1974) Surf. Sci. 44 310 Occurrence Handle10.1016/0039-6028(74)90120-4 Occurrence Handle1:CAS:528:DyaE2cXlsF2gsLs%3D

    Article  CAS  Google Scholar 

  5. G. Comsa R. David (1977) Chem. Phys. Lett. 49 512 Occurrence Handle10.1016/0009-2614(77)87027-9 Occurrence Handle1:CAS:528:DyaE2sXlt1eitLk%3D

    Article  CAS  Google Scholar 

  6. H.P. Steinrück A. Winkler K.D. Rendulic (1985) Surf. Sci. 154 99 Occurrence Handle10.1016/0039-6028(85)90355-3

    Article  Google Scholar 

  7. A.E. Dabiri T.R. Lee R.E. Stickney (1971) Surf. Sci. 26 522 Occurrence Handle10.1016/0039-6028(71)90013-6 Occurrence Handle1:CAS:528:DyaE3MXksFemt74%3D

    Article  CAS  Google Scholar 

  8. M. Balooch R.E. Stickney (1974) Surf. Sci. 44 2310 Occurrence Handle10.1016/0039-6028(74)90120-4

    Article  Google Scholar 

  9. M.J. Cardillo M. Balooch R.E. Stickney (1975) Surf. Sci. 50 263 Occurrence Handle10.1016/0039-6028(75)90024-2 Occurrence Handle1:CAS:528:DyaE2MXltlOgsrw%3D

    Article  CAS  Google Scholar 

  10. G. Comsa R. David B.J. Schumacher (1979) Surf. Sci. 85 45 Occurrence Handle10.1016/0039-6028(79)90232-2 Occurrence Handle1:CAS:528:DyaE1MXltFartL4%3D

    Article  CAS  Google Scholar 

  11. G. Comsa R. David (1982) Surf. Sci. 117 77 Occurrence Handle10.1016/0039-6028(82)90487-3 Occurrence Handle1:CAS:528:DyaL38Xks1WmtLY%3D

    Article  CAS  Google Scholar 

  12. T. Matsushima K. Shobatake Y. Ohno K. Nagai K. Tabayashi (1991) Chem. Phys. Lett. 187 277 Occurrence Handle10.1016/0009-2614(91)90425-9

    Article  Google Scholar 

  13. Y. Ohno I. Kobal H. Horino I. Reznicka T. Matsushima (2001) Appl. Surf. Sci. 169 273 Occurrence Handle10.1016/S0169-4332(00)00668-1

    Article  Google Scholar 

  14. K.H. Allers H. Pfnür P. Feulner D. Menzel (1994) J. Chem. Phys. 100 3985 Occurrence Handle10.1063/1.466332 Occurrence Handle1:CAS:528:DyaK2cXitVWls7o%3D

    Article  CAS  Google Scholar 

  15. T. Sagara T. Kuga K. Tanaka T. Shibataka T. Fujimoto A. Namiki (2002) Phys. Rev. Lett. 89 086101 Occurrence Handle10.1103/PhysRevLett.89.086101 Occurrence Handle1:STN:280:DC%2BD38vjsV2iuw%3D%3D

    Article  CAS  Google Scholar 

  16. T. Niida H. Tsurumaki A. Namiki (2006) J. Chem. Phys. 124 024715 Occurrence Handle10.1063/1.2141953 Occurrence Handle1:STN:280:DC%2BD28%2Fjs1ehsQ%3D%3D

    Article  CAS  Google Scholar 

  17. C. Eibl A. Winkler (2001) Surf. Sci. 482–485 201 Occurrence Handle10.1016/S0039-6028(00)01015-3

    Article  Google Scholar 

  18. C. Eibl A Winkler (2002) J. Chem. Phys. 117 834 Occurrence Handle10.1063/1.1483849 Occurrence Handle1:CAS:528:DC%2BD38XkvFyiu7o%3D

    Article  CAS  Google Scholar 

  19. G. Pauer M. Kratzer A. Winkler (2005) J. Chem. Phys. 123 204702 Occurrence Handle10.1063/1.2121487 Occurrence Handle1:STN:280:DC%2BD2MnmsFWhug%3D%3D

    Article  CAS  Google Scholar 

  20. G.D. Kubiak G.O. Sitz R.N. Zare (1985) J. Chem. Phys. 83 2538 Occurrence Handle10.1063/1.449300 Occurrence Handle1:CAS:528:DyaL2MXlsVOlur0%3D

    Article  CAS  Google Scholar 

  21. H.A. Michelsen C.T. Rettner D.J. Auerbach (1992) Phys. Rev. Lett. 69 2678 Occurrence Handle10.1103/PhysRevLett.69.2678 Occurrence Handle1:CAS:528:DyaK38XmsVSgt70%3D

    Article  CAS  Google Scholar 

  22. C.T. Rettner H.A. Michelsen D.J. Auerbach (1993) J. Vac. Sci. Technol. A11 1901

    Google Scholar 

  23. L. Schröter C. Trame R. David H. Zacharias (1992) Surf. Sci. 272 229 Occurrence Handle10.1016/0039-6028(92)91443-F

    Article  Google Scholar 

  24. H. Zacharias (1988) Appl. Phys. A 47 37 Occurrence Handle10.1007/BF00619697

    Article  Google Scholar 

  25. A. Hodgson (2000) Prog. Surf. Sci. 63 1 Occurrence Handle10.1016/S0079-6816(99)00017-9 Occurrence Handle1:CAS:528:DC%2BD3cXotFCquw%3D%3D

    Article  CAS  Google Scholar 

  26. M.J. Murphy A. Hodgson (1996) Surf. Sci. 368 55 Occurrence Handle10.1016/S0039-6028(97)80022-2 Occurrence Handle1:CAS:528:DyaK2sXhslKjsQ%3D%3D

    Article  CAS  Google Scholar 

  27. D. Gleispach A. Winkler (2003) Surf. Sci. 537 L435 Occurrence Handle10.1016/S0039-6028(03)00331-5 Occurrence Handle1:CAS:528:DC%2BD3sXks1aqsr8%3D

    Article  CAS  Google Scholar 

  28. D. Gleispach P. Kailbauer A. Winkler (2003) Vacuum 71 95 Occurrence Handle10.1016/S0042-207X(02)00720-0 Occurrence Handle1:CAS:528:DC%2BD3sXivV2htr0%3D

    Article  CAS  Google Scholar 

  29. G. Pozgainer L. Windholz A. Winkler (1994) Meas. Sci. Technol. 5 947 Occurrence Handle10.1088/0957-0233/5/8/013 Occurrence Handle1:CAS:528:DyaK2cXlvVyiu7w%3D

    Article  CAS  Google Scholar 

  30. M. Kratzer S. Surnev F.P. Netzer A. Winkler (2006) J. Chem. Phys. 125 074703 Occurrence Handle10.1063/1.2336770 Occurrence Handle1:STN:280:DC%2BD28rhvF2itw%3D%3D

    Article  CAS  Google Scholar 

  31. G. Pauer M. Kratzer A. Winkler (2005) Vacuum 80 81 Occurrence Handle10.1016/j.vacuum.2005.07.035 Occurrence Handle1:CAS:528:DC%2BD2MXhtVGku7nE

    Article  CAS  Google Scholar 

  32. U. Bischler E. Bertel (1993) J. Vac. Sci. Technol. A11 458

    Google Scholar 

  33. C. Eibl G. Lackner A. Winkler (1999) J. Chem. Phys. 10 1154

    Google Scholar 

  34. K.D. Rendulic A. Winkler (1994) Surf. Sci. 299/300 261 Occurrence Handle10.1016/0039-6028(94)90659-9

    Article  Google Scholar 

  35. G.R. Darling S. Holloway (1995) Rep. Prog. Phys. 58 1595 Occurrence Handle10.1088/0034-4885/58/12/001 Occurrence Handle1:CAS:528:DyaK28XhtVOrsLc%3D

    Article  CAS  Google Scholar 

  36. G. Comsa, Proc. 7th Intern. Vacuum Congr. and 3rd Intern. Conf. Solid Surf. (Vienna, 1977) p.1317

  37. G. Anger A. Winkler K.D. Rendulic (1989) Surf. Sci. 220 1 Occurrence Handle10.1016/0039-6028(89)90459-7 Occurrence Handle1:CAS:528:DyaL1MXmtF2qt7s%3D

    Article  CAS  Google Scholar 

  38. K.D. Rendulic (1992) Surf. Sci. 272 34 Occurrence Handle10.1016/0039-6028(92)91419-C Occurrence Handle1:CAS:528:DyaK38XkslOitrg%3D

    Article  CAS  Google Scholar 

  39. C. Resch H.F. Berger K.D. Rendulic E. Bertel (1994) Surf. Sci. 316 L1105 Occurrence Handle10.1016/0039-6028(94)91213-0 Occurrence Handle1:CAS:528:DyaK2cXntVyqtbo%3D

    Article  CAS  Google Scholar 

  40. C. Resch V. Zhukov A. Lugstein H.F. Berger A. Winkler K.D. Rendulic (1993) Chem. Phys. 177 421 Occurrence Handle10.1016/0301-0104(93)80023-3 Occurrence Handle1:CAS:528:DyaK2cXhsF2mtQ%3D%3D

    Article  CAS  Google Scholar 

  41. H.P. Bonzel (1987) Surf. Sci. Rep. 8 43 Occurrence Handle10.1016/0167-5729(88)90007-6 Occurrence Handle1:CAS:528:DyaL1cXhtFKmsQ%3D%3D

    Article  CAS  Google Scholar 

  42. E. Bertel R. Sandl K.D. Rendulic M. Beutl (1996) Ber. Bunsenges. Phys. Chem. 100 114 Occurrence Handle1:CAS:528:DyaK28XhtFKrsL0%3D

    CAS  Google Scholar 

  43. S. Günther H. Marbach R. Hoyer R. Imbihil L. Gregoratti A. Bariniov M. Kiskinova (2002) J. Chem. Phys. 117 2923 Occurrence Handle10.1063/1.1491408

    Article  Google Scholar 

  44. H. Marbach S. Günther B. Luerssen L. Gregoratti M. Kiskinova R. Imbihil (2002) Catal. Lett. 83 161 Occurrence Handle10.1023/A:1021073711705 Occurrence Handle1:CAS:528:DC%2BD38Xos1WgsLg%3D

    Article  CAS  Google Scholar 

  45. G. Pauer A. Winkler (2004) J. Chem. Phys. 120 3864 Occurrence Handle10.1063/1.1643352 Occurrence Handle1:CAS:528:DC%2BD2cXhsVyrtbg%3D

    Article  CAS  Google Scholar 

  46. D.D. Eley E.K. Rideal (1940) Nature 46 401

    Google Scholar 

  47. J. Harris B. Kasemo (1981) Surf. Sci. 105 L281 Occurrence Handle10.1016/0039-6028(81)90004-2 Occurrence Handle1:CAS:528:DyaL3MXitFGit7s%3D

    Article  CAS  Google Scholar 

  48. A. Winkler (1998) Appl. Phys. A 67 637 Occurrence Handle10.1007/s003390050835 Occurrence Handle1:CAS:528:DyaK1cXnslWnurY%3D

    Article  CAS  Google Scholar 

  49. S. Surnev M. Sock G. Kresse J.N. Andersen M.G. Ramsey F.P. Netzer (2003) J. Phys. Chem. B 107 4777 Occurrence Handle10.1021/jp0223408 Occurrence Handle1:CAS:528:DC%2BD3sXjt1Kqsbo%3D

    Article  CAS  Google Scholar 

  50. C. Klein G. Kresse S. Surnev F.P. Netzer M. Schmid P. Varga (2003) Phys. Rev. B 68 235416 Occurrence Handle10.1103/PhysRevB.68.235416

    Article  Google Scholar 

  51. M. Beutl M. Riedler K.D. Rendulic (1995) Chem. Phys. Lett. 247 249 Occurrence Handle10.1016/0009-2614(95)01208-5 Occurrence Handle1:CAS:528:DyaK2MXhtVSgsLbM

    Article  CAS  Google Scholar 

  52. S. Surnev G. Kresse M. Sock M.G. Ramsey F.P. Netzer (2001) Surf. Sci. 495 91 Occurrence Handle10.1016/S0039-6028(01)01503-5 Occurrence Handle1:CAS:528:DC%2BD3MXosl2itbw%3D

    Article  CAS  Google Scholar 

  53. V. Jensen J.N. Andersen H.B. Nielsen D.L. Adams (1982) Surf. Sci. 116 66 Occurrence Handle10.1016/0039-6028(82)90679-3 Occurrence Handle1:CAS:528:DyaL38XhvVOrs7k%3D

    Article  CAS  Google Scholar 

  54. G. Krenn C. Eibl W. Mauritsch E.L.D. Hebenstreit P. Varga A. Winkler (2000) Surf. Sci. 445 343 Occurrence Handle10.1016/S0039-6028(99)01080-8 Occurrence Handle1:CAS:528:DC%2BD3cXmsFaitw%3D%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, A., Kratzer, M., Pauer, G. et al. Time-of-flight studies on catalytic model reactions. Top Catal 46, 189–199 (2007). https://doi.org/10.1007/s11244-007-0329-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0329-1

Keywords

Navigation