Topics in Catalysis

, Volume 44, Issue 1–2, pp 145–158 | Cite as

Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime

  • Uzi Landman
  • Bokwon Yoon
  • Chun Zhang
  • Ueli Heiz
  • Matthias Arenz

Focusing on size-selected gold clusters consisting of up to 20 atoms, that is, in the size regime where properties cannot be obtained from those of the bulk material through scaling considerations, we discuss the current state of understanding pertaining to various factors that control the reactivity and catalytic activity of such nanostructures, using the CO oxidation reaction catalyzed by the gold nanoclusters adsorbed on MgO as a paradigm. These factors include the role of the metal-oxide support and its defects, the charge state of the cluster, structural fluxionality of the clusters, electronic size effects, the effect of an underlying metal support on the dimensionality, charging and chemical reactivity of gold nanoclusters adsorbed on the metal-supported metal-oxide, and the promotional effect of water. We show that through joined experimental and first-principles quantum mechanical calculations and simulations, a detailed picture of the reaction mechanism emerges.


dimethylamine pyridine XPS STM amide surface Cu(110), amine oxide nanocatalysis CO oxidation size selected gold clusters non-scalable size regime first principle calculations active sites defects metal oxide films structural dynamic fluxionality reaction mechanisms activation barriers humidity effects tuning catalytic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landman, U. 2005Proc. Natl. Acad. Sci. USA1026671PubMedCrossRefADSGoogle Scholar
  2. 2.
    Heiz, U., Landman, U. 2006NanocatalysisSpringerNew YorkGoogle Scholar
  3. 3.
    Hammer, B., Norskov, J.K. 1995Nature376238CrossRefADSGoogle Scholar
  4. 4.
    S.A.C. Carabineiro and D.T. Thompson, in Ref. 2, Chap. 6, p. 375Google Scholar
  5. 5.
    Saliba, N., Parker, D.H., Koel, B.E. 1998Surf. Sci.410270CrossRefGoogle Scholar
  6. 6.
    Haruta, M. 2002Cattech6102CrossRefGoogle Scholar
  7. 7.
    Cha, D.Y., Parravan, G. 1970J. Catal.18200CrossRefGoogle Scholar
  8. 8.
    G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, J. Chem. Soc. Chem. Commun. (1973) 444Google Scholar
  9. 9.
    Haruta, M., Yamada, N., Kobayashi, T., Iijima, S. 1989J. Catal.115301CrossRefGoogle Scholar
  10. 10.
    Haruta, M. 2004Gold Bull.3727Google Scholar
  11. 11.
    Nkosi, B., Adams, M.D., Coville, N.J., Hutchings, G.J. 1991J. Catal.128378CrossRefGoogle Scholar
  12. 12.
    Nkosi, B., Coville, N.J., Hutchings, G.J., Adams, M.D., Friedl, J., Wagner, F.E. 1991J. Catal.128366CrossRefGoogle Scholar
  13. 13.
    Campbell, C.T. 2004Science306234PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, M.S., Goodman, D.W. 2004Science306252PubMedCrossRefADSGoogle Scholar
  15. 15.
    Bond, G.C., Thompson, D.T. 2000Gold Bull.3341Google Scholar
  16. 16.
    Bondzie, V.A., Parker, S.C., Campbell, C.T. 1999Catal. Lett.63143CrossRefGoogle Scholar
  17. 17.
    Bondzie, V.A., Parker, S.C., Campbell, C.T. 1999J. Vac. Sci. Technol. A171717CrossRefADSGoogle Scholar
  18. 18.
    Sanchez, A., Abbet, S., Heiz, U., Schneider, W.D., Häkkinen, H., Barnett, R.N., Landman, U. 1999J. Phys. Chem. A1039573CrossRefGoogle Scholar
  19. 19.
    Yoon, B., Häkkinen, H., Landman, U., Worz, A.S., Antonietti, J.M., Abbet, S., Judai, K., Heiz, U. 2005Science307403PubMedCrossRefADSGoogle Scholar
  20. 20.
    Molina, L.M., Hammer, B. 2005Appl. Catal. A29121CrossRefGoogle Scholar
  21. 21.
    Meerson, O., Sitja, G., Henry, C.R. 2005Eur. Phys. J. D34119CrossRefADSGoogle Scholar
  22. 22.
    Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J., Delmon, B. 1993J. Catal.144175CrossRefGoogle Scholar
  23. 23.
    Date, M., Haruta, M. 2001J. Catal.201221CrossRefGoogle Scholar
  24. 24.
    Date, M., Okumura, M., Tsubota, S., Haruta, M. 2004Angew. Chem. Int. Ed.432129CrossRefGoogle Scholar
  25. 25.
    M. Valden , X. Lai and D.W. Goodman, Science 281 (1998) 1647. See also T.V. Choudhary and D.W. Goodman, Appl. Catal. A 291 (2005) 32, and a recent review by M.S. Chen and D.W. Goodman, Accounts Chem. Res. 39 (2006) 739. Google Scholar
  26. 26.
    Yoon, B., Häkkinen, H., Landman, U. 2003J. Phys. Chem. A1074066CrossRefGoogle Scholar
  27. 27.
    Lopez, N., Norskov, J.K. 2002J. Am. Chem. Soc.12411262PubMedCrossRefGoogle Scholar
  28. 28.
    Mills, G., Gordon, M.S., Metiu, H. 2002Chem. Phys. Lett.359493CrossRefGoogle Scholar
  29. 29.
    Molina, L.M., Hammer, B. 2003Phys. Rev. Lett.90206102PubMedCrossRefADSGoogle Scholar
  30. 30.
    Molina, L.M., Hammer, B. 2004Phys. Rev. B69155424CrossRefADSGoogle Scholar
  31. 31.
    Meyer, R., Lemire, C., Shaikhutdinov, S., Freund, H.J. 2004Gold Bull.3772Google Scholar
  32. 32.
    Lemire, C., Meyer, R., Shaikhutdinov, S., Freund, H.J. 2004Angew. Chem. Int. Ed.43118CrossRefGoogle Scholar
  33. 33.
    Lemire, C., Meyer, R., Shaikhutdinov, S.K., Freund, H.J. 2004Surf. Sci.55227CrossRefADSGoogle Scholar
  34. 34.
    deHeer, W.A. 1993Rev. Mod. Phys.65611CrossRefADSGoogle Scholar
  35. 35.
    Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E. 1981J. Chem. Phys.746511CrossRefADSGoogle Scholar
  36. 36.
    Heiz, U., Vanolli, F., Trento, L., Schneider, W.D. 1997Rev. Sci. Instrum.681986CrossRefADSGoogle Scholar
  37. 37.
    Heiz, U., Schneider, W.D. 2001Crit. Rev. Solid State Mater. Sci.2625CrossRefGoogle Scholar
  38. 38.
    Cleveland, C.L., Landman, U. 1992Science257355CrossRefADSGoogle Scholar
  39. 39.
    Cheng, H.-P., Landman, U. 1993Science2601304CrossRefADSGoogle Scholar
  40. 40.
    Cheng, H-.P., Landman, U. 1994J. Phys. Chem.983527CrossRefGoogle Scholar
  41. 41.
    Moseler, M., Häkkinen, H., Landman, U. 2002Phys. Rev. Lett.89033401PubMedCrossRefGoogle Scholar
  42. 42.
    Bromann, K., Brune, H., Felix, C., Harbich, W., Monot, R., Buttet, J., Kern, K. 1997Surf. Sci.3771051CrossRefGoogle Scholar
  43. 43.
    Tong, X., Benz, L., Kemper, P., Metiu, H., Bowers, M.T., Buratto, S.K. 2005J. Am. Chem. Soc.12713516PubMedCrossRefGoogle Scholar
  44. 44.
    Fedrigo, S., Harbich, W., Buttet, J. 1998Phys. Rev. B587428CrossRefADSGoogle Scholar
  45. 45.
    Judai, K., Abbet, S., Wörz, A.S., Heiz, U., Henry, C.R. 2004J. Am. Chem. Soc.1262732PubMedCrossRefGoogle Scholar
  46. 46.
    Antonietti, J.M., Michalski, M., Heiz, U., Jones, H., Lim, K.H., Rösch, N., Vitto, A., Pacchioni, G. 2005Phys. Rev. Lett.94213402PubMedCrossRefADSGoogle Scholar
  47. 47.
    Di Valentin, C., Vitto, A., Pacchioni, G., Abbet, S., Wörz, A.S., Judai, K., Heiz, U. 2002J. Phys. Chem. B10611961CrossRefGoogle Scholar
  48. 48.
    Sterrer, M., Fischbach, E., Risse, T., Freund, H.J. 2005Phys. Rev. Lett.94186101PubMedCrossRefADSGoogle Scholar
  49. 49.
    Schintke, S., Schneider, W.D. 2004J. Phys. Condens. Matter16R49CrossRefGoogle Scholar
  50. 50.
    Sterrer, M., Heyde, M., Novicki, M., Nilius, N., Risse, T., Rust, H.P., Pacchioni, G., Freund, H.J. 2006J. Phys. Chem. B11046PubMedCrossRefGoogle Scholar
  51. 51.
    Peterka, D., Tegenkamp, C., Schröder, K.M., Ernst, W., Pfnur, H. 1999Surf. Sci.431146CrossRefGoogle Scholar
  52. 52.
    Blyholder, G. 1964J. Phys. Chem.682772CrossRefGoogle Scholar
  53. 53.
    Häkkinen, H., Abbet, W., Sanchez, A., Heiz, U., Landman, U. 2003Angew. Chem. Int. Ed.421297CrossRefGoogle Scholar
  54. 54.
    Zhang, C., Yoon, B., Landman, U. 2007J. Am. Chem. Soc.1292228PubMedCrossRefGoogle Scholar
  55. 55.
    This scheme is commonly employed in experimental studies of Au nanstructures adsorbed on MgO films; see M.-C. Wu, J.S. Corncillc, C.A. Estrada, J.W. He and D.W. Goodman, Chem. Phys. Lett. 182 (1991) 472, and refs. 2 and 18. Google Scholar
  56. 56.
    Ricci, D., Bongiorno, A., Pacchioni, G., Landman, U. 2006Phys. Rev. Lett.9736106CrossRefGoogle Scholar
  57. 57.
    Kresse, G., Hafner, J. 1993Phys. Rev. B47R558CrossRefADSGoogle Scholar
  58. 58.
    Kresse, G., Furthmuller, J. 1996Phys. Rev. B5411169CrossRefADSGoogle Scholar
  59. 59.
    Barnett, R.N., Landman, U. 1993Phys. Rev. B482081CrossRefADSGoogle Scholar
  60. 60.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C. 1992Phys. Rev. B466671CrossRefADSGoogle Scholar
  61. 61.
    Vanderbilt, D. 1990Phys. Rev. B417892CrossRefADSGoogle Scholar
  62. 62.
    Giordano, L., Baistrocchi, M., Pacchioni, G. 2005Phys. Rev. B72115403CrossRefADSGoogle Scholar
  63. 63.
    Giordano, L., Goniakowski, J., Pacchioni, G. 2003Phys. Rev. B67045410CrossRefADSGoogle Scholar
  64. 64.
    J. Li, X. Li, J. H.-Zhai and L.-S. Wang, Science 299 (2003) 864; X. P. Xing, B. Yoon, U. Landman and J.H. Parks, Phys. Rev. B 74 (2006) 165423; B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. Von Issendorff, H. Häkkinen, M. Moseler and U. Landman, Chem. Phys. Chem. 8 (2007) 157Google Scholar
  65. 65.
    Bongiorno, A., Landman, U. 2005Phys. Rev. Lett.95106102PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Uzi Landman
    • 1
  • Bokwon Yoon
    • 1
  • Chun Zhang
    • 1
  • Ueli Heiz
    • 2
  • Matthias Arenz
    • 2
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Lehrstuhl für Physikalische Chemie ITechnische Universität MünchenGarchingGermany

Personalised recommendations