Skip to main content
Log in

Reactivity and sintering kinetics of Au/TiO2(110) model catalysts: particle size effects

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

We review here our studies of the reactivity and sintering kinetics of model catalysts consisting of gold nanoparticles dispersed on TiO2(110). First, the nucleation and growth of vapor-deposited gold on this surface was experimentally examined using x-ray photoelectron spectroscopy and low energy ion scattering. Gold initially grows as two-dimensional islands up to a critical coverage, θ cr, after which 3D gold nanoparticles grow. The results at different temperatures are fitted well with a kinetic model, which includes various energetic parameters for Au adatom migration. Oxygen was dosed onto the resulting gold nanoparticles using a hot filament technique. The desorption energy of Oa was examined using temperature programmed desorption (TPD). The Oa is bonded ~40% more strongly to smaller (thinner) Au islands. Gaseous CO reacts rapidly with this Oa to make CO2, probably via adsorbed CO. The reactivity of Oa with CO increases with increasing particle size, as expected based on Brønsted relations. Propene adsorption leads to TPD peaks for three different molecularly adsorbed states on Au/TiO2(110), corresponding to propene adsorbed on gold islands, to Ti sites on the substrate, and to the perimeter of gold islands, with adsorption energies of 40, 52 and 73 kJ/mol, respectively. Thermal sintering of the gold nanoparticles was explored using temperature-programmed low-energy ion scattering. These sintering rates for a range of Au loadings at temperatures from 200 to 700 K were well fitted by a theoretical model which takes into consideration the dramatic effect of particle size on metal chemical potential using a modified bond additivity model. When extrapolated to simulate isothermal sintering at 700 K for 1 year, the resulting particle size distribution becomes very narrow. These results question claims that the shape of particle size distributions reveal their sintering mechanisms. They also suggest why the growth of colloidal nanoparticles in liquid solutions can result in very narrow particle size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta (1997) Catal. Today 36 153 Occurrence Handle10.1016/S0920-5861(96)00208-8 Occurrence Handle1:CAS:528:DyaK2sXitFCrtb0%3D

    Article  CAS  Google Scholar 

  2. T. Hayashi K. Tanaka M. Haruta (1998) J. Catal. 178 566 Occurrence Handle10.1006/jcat.1998.2157 Occurrence Handle1:CAS:528:DyaK1cXmtlChsLk%3D

    Article  CAS  Google Scholar 

  3. M. Haruta (2002) Cattech 6 102 Occurrence Handle10.1023/A:1020181423055 Occurrence Handle1:CAS:528:DC%2BD38XmsFGrsLg%3D

    Article  CAS  Google Scholar 

  4. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle9733505 Occurrence Handle10.1126/science.281.5383.1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D Occurrence Handle1998Sci...281.1647V

    Article  PubMed  CAS  ADS  Google Scholar 

  5. M. Valden S. Pak X. Lai D.W. Goodman (1998) Catal. Lett. 56 7 Occurrence Handle10.1023/A:1019028205985 Occurrence Handle1:CAS:528:DyaK1cXotVaksb0%3D

    Article  CAS  Google Scholar 

  6. M.S. Chen D.W. Goodman (2004) Science 300 252 Occurrence Handle10.1126/science.1102420 Occurrence Handle1:CAS:528:DC%2BD2cXotFWnsLw%3D

    Article  CAS  Google Scholar 

  7. D.W. Goodman (2005) Catal. Lett. 99 1 Occurrence Handle10.1007/s10562-004-0768-2 Occurrence Handle1:CAS:528:DC%2BD2MXotFKg

    Article  CAS  Google Scholar 

  8. S.S. Lee C.Y. Fan T.P. Wu S.L. Anderson (2004) J. Am. Chem. Soc. 126 5682 Occurrence Handle15125657 Occurrence Handle10.1021/ja049436v Occurrence Handle1:CAS:528:DC%2BD2cXjt1ajuro%3D

    Article  PubMed  CAS  Google Scholar 

  9. S. Lee C.Y. Fan T.P. Wu S.L. Anderson (2005) Surface Sci. 578 5 Occurrence Handle10.1016/j.susc.2005.01.017 Occurrence Handle1:CAS:528:DC%2BD2MXhvFOrt7Y%3D Occurrence Handle2005SurSc.578....5L

    Article  CAS  ADS  Google Scholar 

  10. C.T. Campbell (1997) Surface Sci. Reports 227 1 Occurrence Handle10.1016/S0167-5729(96)00011-8

    Article  Google Scholar 

  11. C.T. Campbell A.W. Grant D.E. Starr S.C. Parker V.E. Bondzie (2000) Topics Catal. 14 43 Occurrence Handle10.1023/A:1009002915667 Occurrence Handle1:CAS:528:DC%2BD3MXjtVarurc%3D

    Article  CAS  Google Scholar 

  12. H.J. Freund M. Baumer H. Kuhlenbeck (2000) Adv. Catal. 45 333 Occurrence Handle1:CAS:528:DC%2BD3cXlslaju70%3D Occurrence Handle10.1016/S0360-0564(02)45017-1

    Article  CAS  Google Scholar 

  13. C.R. Henry (1998) Surface Sci. Reports 31 231 Occurrence Handle10.1016/S0167-5729(98)00002-8 Occurrence Handle1:CAS:528:DyaK1cXlt1aiurw%3D

    Article  CAS  Google Scholar 

  14. A. Sanchez S. Abbet U. Heiz W.D. Schneider H. Hakkinen R.N. Barnett U. Landman (1999) J. Phys. Chem. A 103 9573 Occurrence Handle10.1021/jp9935992 Occurrence Handle1:CAS:528:DyaK1MXntFalurc%3D

    Article  CAS  Google Scholar 

  15. U. Heiz F. Vanolli A. Sanchez W.D. Schneider (1998) J. Am. Chem. Soc. 120 9668 Occurrence Handle10.1021/ja981181w Occurrence Handle1:CAS:528:DyaK1cXlslaksbk%3D

    Article  CAS  Google Scholar 

  16. U. Heiz E.L. Bullock (2004) J. Mat. Chem. 14 564 Occurrence Handle10.1039/b313560h Occurrence Handle1:CAS:528:DC%2BD2cXhtlWmtrg%3D

    Article  CAS  Google Scholar 

  17. S.C. Parker A.W. Grant V.A. Bondzie C.T. Campbell (1999) Surface Sci. 441 10 Occurrence Handle10.1016/S0039-6028(99)00753-0 Occurrence Handle1:CAS:528:DyaK1MXns1artr4%3D

    Article  CAS  Google Scholar 

  18. V. Bondzie S.C. Parker C.T. Campbell (1999) J. Vac. Sci. Technol. A17 1717 Occurrence Handle1999JVST...17.1717B

    ADS  Google Scholar 

  19. V. Bondzie S.C. Parker C.T. Campbell (1999) Catal Lett. 63 143 Occurrence Handle10.1023/A:1019012903936 Occurrence Handle1:CAS:528:DC%2BD3cXlsFOj

    Article  CAS  Google Scholar 

  20. H.M. Ajo V.A. Bondzie C.T. Campbell (2002) Catal. Lett. 78 359 Occurrence Handle10.1023/A:1014925121945 Occurrence Handle1:CAS:528:DC%2BD38XktVGntbs%3D

    Article  CAS  Google Scholar 

  21. C.T. Campbell S.C. Parker D.E Starr (2002) Science 298 811 Occurrence Handle12399586 Occurrence Handle10.1126/science.1075094 Occurrence Handle1:CAS:528:DC%2BD38XotFSntLg%3D Occurrence Handle2002Sci...298..811C

    Article  PubMed  CAS  ADS  Google Scholar 

  22. S.C. Parker C.T. Campbell (2007) Phys. Rev. B. 75 035430 Occurrence Handle10.1103/PhysRevB.75.035430 Occurrence Handle2007PhRvB..75c5430P Occurrence Handle1:CAS:528:DC%2BD2sXhs1ektb0%3D

    Article  ADS  CAS  Google Scholar 

  23. A. Sault R.J. Madix C.T. Campbell (1986) Surf. Sci. 169 347 Occurrence Handle10.1016/0039-6028(86)90616-3 Occurrence Handle1:CAS:528:DyaL28XitlWisbc%3D

    Article  CAS  Google Scholar 

  24. N.D.S. Canning D. Outka R.J. Madix (1984) Surface Sci. 141 240 Occurrence Handle10.1016/0039-6028(84)90209-7 Occurrence Handle1:CAS:528:DyaL2cXks1Sqtrc%3D

    Article  CAS  Google Scholar 

  25. M.A. Bollinger M.A. Vannice (1996) Appl. Catal. B-Environ. 8 417 Occurrence Handle10.1016/0926-3373(95)00077-1 Occurrence Handle1:CAS:528:DyaK28XjsVOhsbY%3D

    Article  CAS  Google Scholar 

  26. M. Haruta S. Tsubota T. Kobayashi H. Kageyama M.J. Genet B. Delmon (1993) J. Catal. 144 175 Occurrence Handle10.1006/jcat.1993.1322 Occurrence Handle1:CAS:528:DyaK2cXhs1GitQ%3D%3D

    Article  CAS  Google Scholar 

  27. P.A. Redhead (1962) Vacuum 12 203 Occurrence Handle10.1016/0042-207X(62)90978-8 Occurrence Handle1:CAS:528:DyaF3sXntFeh

    Article  CAS  Google Scholar 

  28. S.L. Tait Z. Dohnálek C.T. Campbell B.D. Kay (2005) J. Chem. Phys. 122 164708 Occurrence Handle15945700 Occurrence Handle10.1063/1.1883630 Occurrence Handle1:CAS:528:DC%2BD2MXksFKhsb8%3D

    Article  PubMed  CAS  Google Scholar 

  29. S.L. Tait Z. Dohnálek C.T. Campbell B.D. Kay (2006) J. Chem. Phys. 125 234308 Occurrence Handle17190559 Occurrence Handle10.1063/1.2400235 Occurrence Handle1:CAS:528:DC%2BD2sXms1Wr

    Article  PubMed  CAS  Google Scholar 

  30. P. Wynblatt and N.A. Gjostein, in: Progress in Solid State Chemistry, Vol. 9, eds. J.O. McCaldin and G. A. Somorjai (Elsevier Science, Amsterdam 1975) p. 21

  31. G.B. McVicker R.L. Garten R.T. Baker (1978) J. Catal. 54 129 Occurrence Handle10.1016/0021-9517(78)90036-2 Occurrence Handle1:CAS:528:DyaE1cXlvVKmtrs%3D

    Article  CAS  Google Scholar 

  32. G.A. Fuentes and E.-R. Salinas, in: Catalyst Deactivation, eds. C.H. Bartholomew and G.A. Fuentes (Elsevier Science, 1997), p. 573

  33. X. Lai D.W. Goodman (2000) J. Mol. Catal. A 162 33 Occurrence Handle10.1016/S1381-1169(00)00320-4 Occurrence Handle1:CAS:528:DC%2BD3cXovFejtro%3D

    Article  CAS  Google Scholar 

  34. C.E.J. Mitchell A. Howard M. Carney R.G. Egdell (2001) Surface Sci. 490 196 Occurrence Handle10.1016/S0039-6028(01)01333-4 Occurrence Handle1:CAS:528:DC%2BD3MXmtFSlu74%3D

    Article  CAS  Google Scholar 

  35. A. Kolmakov D.W. Goodman (2000) Catalysis Lett. 70 93 Occurrence Handle10.1023/A:1018872931114 Occurrence Handle1:CAS:528:DC%2BD3MXjsVWqtbo%3D

    Article  CAS  Google Scholar 

  36. S. Kielbassa M. Kinne R.J. Behm (2004) J. Phys. Chem. B 108 19184 Occurrence Handle10.1021/jp048547d Occurrence Handle1:CAS:528:DC%2BD2cXpslems7s%3D

    Article  CAS  Google Scholar 

  37. E.C.H. Sykes F.J. Williams M.S. Tikhov R.M. Lambert (2002) J. Phys. Chem. B 106 5390 Occurrence Handle10.1021/jp014562w Occurrence Handle1:CAS:528:DC%2BD38XjsVSiurY%3D

    Article  CAS  Google Scholar 

  38. A. Kolmakov D.W. Goodman (2002) Chem. Record 2 446 Occurrence Handle10.1002/tcr.10045 Occurrence Handle1:CAS:528:DC%2BD3sXovVOhug%3D%3D

    Article  CAS  Google Scholar 

  39. T. Okazawa M. Fujiwara T. Nishimura T. Akita M. Kohyama Y. Kido (2006) Surface Sci. 600 1331 Occurrence Handle10.1016/j.susc.2006.01.028 Occurrence Handle1:CAS:528:DC%2BD28XisFOmt70%3D Occurrence Handle2006SurSc.600.1331O

    Article  CAS  ADS  Google Scholar 

  40. Y. Maeda T. Fujitani S. Tsubota M. Haruta (2004) Surface Sci. 562 1 Occurrence Handle10.1016/j.susc.2004.06.158 Occurrence Handle1:CAS:528:DC%2BD2cXlslKns74%3D Occurrence Handle2004SurSc.562....1M

    Article  CAS  ADS  Google Scholar 

  41. C.G. Granqvist R.A. Buhrman (1975) Appl. Phys. Lett. 27 693 Occurrence Handle10.1063/1.88342 Occurrence Handle1975ApPhL..27..693G

    Article  ADS  Google Scholar 

  42. C.G. Granqvist R.A. Buhrman (1976) J. Catal. 42 477 Occurrence Handle10.1016/0021-9517(76)90125-1 Occurrence Handle1:CAS:528:DyaE28XksFahtrs%3D

    Article  CAS  Google Scholar 

  43. J. Sehested A. Carlsson T.V.W. Janssens P.L. Hansen A.K. Datye (2001) J. Catal. 197 200 Occurrence Handle10.1006/jcat.2000.3085 Occurrence Handle1:CAS:528:DC%2BD3cXptVGnuro%3D

    Article  CAS  Google Scholar 

  44. A.K. Datye Q. Xu K.C. Kharas J.M. McCarty (2006) Catal. Today 111 59 Occurrence Handle10.1016/j.cattod.2005.10.013 Occurrence Handle1:CAS:528:DC%2BD2MXhtlCnsb3F

    Article  CAS  Google Scholar 

  45. D.V. Talapin A.L. Rogach M. Haase H. Weller (2001) J. Phys. Chem. B 105 12278 Occurrence Handle10.1021/jp012229m Occurrence Handle1:CAS:528:DC%2BD3MXot1yksr8%3D

    Article  CAS  Google Scholar 

  46. A.L. Rogach D.V. Talapin E.V. Shevchenko A. Kornowski M. Haase H. Weller (2002) Adv. Functional Mat. 12 653 Occurrence Handle10.1002/1616-3028(20021016)12:10<653::AID-ADFM653>3.0.CO;2-V Occurrence Handle1:CAS:528:DC%2BD38Xos1Ght74%3D

    Article  CAS  Google Scholar 

  47. P. Wynblatt R.A.D. Betta N.A. Gjostein (1975) NoChapterTitle E. Drauglis R.I. Jaffee (Eds) The Physical Basis for Heterogeneous Catalysis Plenum Press New York 501

    Google Scholar 

  48. P. Wynblatt N.A. Gjostein (1976) Acta Metallurgica 24 1165 Occurrence Handle10.1016/0001-6160(76)90034-1 Occurrence Handle1:CAS:528:DyaE2sXkslGqtw%3D%3D

    Article  CAS  Google Scholar 

  49. M.J. Jak C. Konstapel A.v Kreuningen J. Crost J. Verhoeven J.W. Frenken (2001) Surface Sci. 474 28 Occurrence Handle10.1016/S0039-6028(00)00982-1 Occurrence Handle1:CAS:528:DC%2BD3MXhs1Ghs78%3D

    Article  CAS  Google Scholar 

  50. M.J. Jak C. Konstapel A.v Kreuningen J. Verhoeven J.W. Frenken (2000) Surface Sci. 457 259 Occurrence Handle10.1016/S0039-6028(00)00431-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, S.C., Campbell, C.T. Reactivity and sintering kinetics of Au/TiO2(110) model catalysts: particle size effects. Top Catal 44, 3–13 (2007). https://doi.org/10.1007/s11244-007-0274-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-0274-z

Keywords

Navigation