Zirconia supported Ru–Co bimetallic catalysts for diesel soot oxidation

Various amounts of ruthenia–cobaltate bimetallic catalyst supported on zirconia have been prepared by co-impregnation method and their catalytic activity towards soot/carbon oxidation has been evaluated using TG technique under the loose contact condition. These catalysts show good activity for carbon/soot oxidation, which is observed to be a factor of ruthenia content. The thermal stability experiments confirmed the stability of catalytic materials in air at least up to 900 °C. In this way, ruthenia can be easily dispersed on zirconia possibly through the solid solution formation, while its thermal stability can be significantly improved by introducing a transition metal namely cobalt. Formation of Ru–Co bimetallic clusters over zirconia is probably responsible for its thermal stability, while dissociative adsorption of oxygen on catalyst surface appears to be responsible for their catalytic activity.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    G. Boretto, M. Debenedetti, Adv. Propul. Emiss. Technol. (2001) 127

  2. 2

    A.F. Ahlstrom C.V.I. Odenbrand (1990) Appl. Catal. B 60 143 Occurrence Handle10.1016/S0166-9834(00)82178-8

    Article  Google Scholar 

  3. 3

    J.P.A. Neeft M. Makkee J.A. Moulijn (1996) Appl. Catal. B Environ. 8 57 Occurrence Handle10.1016/0926-3373(95)00057-7 Occurrence Handle1:CAS:528:DyaK28XhsFOjtLk%3D

    Article  CAS  Google Scholar 

  4. 4

    D. Fino V. Specchia (2004) Chem. Eng. Sci. 59 4825 Occurrence Handle10.1016/j.ces.2004.07.012 Occurrence Handle1:CAS:528:DC%2BD2cXhtVCqtrbL

    Article  CAS  Google Scholar 

  5. 5

    D. Fino N. Russo G. Saracco V. Specchia (2003) J. Catal. 217 367 Occurrence Handle1:CAS:528:DC%2BD3sXktVKjsrk%3D

    CAS  Google Scholar 

  6. 6

    W.E. Bell M. Tagami (1963) J. Phys. Chem. 67 2432 Occurrence Handle1:CAS:528:DyaF3sXkvVSjurs%3D

    CAS  Google Scholar 

  7. 7

    K.S. Kim N. Winograd (1974) J. Catal. 35 66 Occurrence Handle10.1016/0021-9517(74)90184-5 Occurrence Handle1:CAS:528:DyaE2cXlslKqt74%3D

    Article  CAS  Google Scholar 

  8. 8

    N.K. Labhsetwar A. Watanabe T. Mitsuhashi H. Henada (2004) J. Mol. Catal. A: Chem. 233 217 Occurrence Handle10.1016/j.molcata.2004.04.047 Occurrence Handle1:CAS:528:DC%2BD2cXpt1WmsL0%3D

    Article  CAS  Google Scholar 

  9. 9

    N.K. Labhsetwar V. Balek S. Rayalu T. Terasaka A. Yamazaki J. Subrt H. Henada T. Mitsuhashi (2005) J. Therm. Anal. Colorim. 80 671 Occurrence Handle10.1007/s10973-005-0712-8 Occurrence Handle1:CAS:528:DC%2BD2MXks1Cjtb8%3D

    Article  CAS  Google Scholar 

  10. 10

    H. Fujii, N. Mizuno and M. Misono, Chem. Lett. (1987) 2147

  11. 11

    K.C. Pratt J.V. Sanders V. Christov (1990) J. Catal. 124 416 Occurrence Handle10.1016/0021-9517(90)90189-Q Occurrence Handle1:CAS:528:DyaK3cXlsF2ksb0%3D

    Article  CAS  Google Scholar 

  12. 12

    T. Iizuka Y. Tanaka K. Tanable (1982) J. Catal. 76 1 Occurrence Handle10.1016/0021-9517(82)90230-5 Occurrence Handle1:CAS:528:DyaL38XkslGgt74%3D

    Article  CAS  Google Scholar 

  13. 13

    J.R. Gonzalez-velasco M.A. Gutierrez-Ortiz J.A. Gonzalez-Marcos P. Pranda P. Stelteripohl (1999) J. Catal. 187 24 Occurrence Handle10.1006/jcat.1999.2580 Occurrence Handle1:CAS:528:DyaK1MXlvFahurs%3D

    Article  CAS  Google Scholar 

  14. 14

    T. Ozawa (1970) J. Therm. Anal. 2 301 Occurrence Handle10.1007/BF01911411 Occurrence Handle1:CAS:528:DyaE3MXmvVaisw%3D%3D

    Article  CAS  Google Scholar 

  15. 15

    T. Ozawa (1970) J. Therm. Anal. 7 301

    Google Scholar 

  16. 16

    J.P.A. Neeft M. Makkee J.A. Molijin (1996) Appl. Catal. B Environ. 8 57 Occurrence Handle10.1016/0926-3373(95)00057-7 Occurrence Handle1:CAS:528:DyaK28XhsFOjtLk%3D

    Article  CAS  Google Scholar 

  17. 17

    B.A.A.L. Setten Particlevan J.M. Schouten M. Makkee J.A. Moulijn (2000) Appl. Catal. B 28 253 Occurrence Handle10.1016/S0926-3373(00)00182-X

    Article  Google Scholar 

  18. 18

    G. Mul J.P.A. Neeft F. Kapteijin J.A. Moulijn (1998) Carbon 36 1269 Occurrence Handle10.1016/S0008-6223(97)00209-1 Occurrence Handle1:CAS:528:DyaK1cXlsFWitLc%3D

    Article  CAS  Google Scholar 

  19. 19

    W.F. Shangguan Y. Teraoka S. Kagawa (1997) Appl. Catal. B 12 237 Occurrence Handle10.1016/S0926-3373(96)00076-8 Occurrence Handle1:CAS:528:DyaK2sXivV2nsrw%3D

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nitin Labhsetwar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dhakad, M., Fino, D., Rayalu, S.S. et al. Zirconia supported Ru–Co bimetallic catalysts for diesel soot oxidation. Top Catal 42, 273–276 (2007). https://doi.org/10.1007/s11244-007-0190-2

Download citation

Keywords

  • Ru–Co bimetallic catalyst
  • soot oxidation
  • diesel emission
  • zirconia