Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Absolute potential measurements in solid and aqueous electrochemistry using two Kelvin probes and their implications for the electrochemical promotion of catalysis

  • 229 Accesses

  • 19 Citations

The concept of absolute electrode potential in aqueous and solid electrochemistry is discussed in light of the first experimental investigation utilizing a two Kelvin probe system which allows for direct in situ measurement of the work functions of both the, emersed or spillover modified, working and reference electrodes.

In both cases, i.e. emersed electrodes in aqueous electrochemistry and spillover-modified electrodes in solid electrochemistry, it is found that the following two equations relate the working–reference electrode potential difference, U WR, and the work functions, ΦW and ΦR of the emersed or spillover-modified working and reference electrodes:

$${eU_{\rm WR}=\Phi_{\rm W}-\Phi_{\rm R}}$$
$${e\Delta U_{\rm WR}=\Delta \Phi_{\rm W}}$$

where U WR is varied either by varying the gaseous composition or via a potentiostat. These equations show that the work function of emersed electrodes in aqueous electrochemistry or of spillover-modified electrodes in solid state electrochemistry is the natural choice of the absolute electrode potential:

$${U_{\rm abs}=\Phi_{\rm W}/e}$$

The value \({{U_{{\rm H}_2}^{0}(\hbox{abs})=4.46\pm 0.15\,\hbox{V}}}\) was obtained as the absolute potential value of the H2/H+ electrode in aqueous solutions at \({{p_{{\rm H}_2}=}1\,\hbox{bar}}\), pH = 0 and T = 298 K, while the value of \({{U_{{\rm O}_2}^{0}(\hbox{abs})=5.14\pm 0.05\,\hbox{V}}}\) was measured as the absolute potential value of the O2/O2− electrode in YSZ (8 mol% Y2O3-stabilized-ZrO2) at \({{p_{{\rm O}_2}=1\,{\rm bar}}}\) and T = 673 K.

This is a preview of subscription content, log in to check access.

References

  1. 1

    E. Gileadi S.D. Argade J.O.M. Bockris (1966) J. Phys. Chem. 70 2044–2046 Occurrence Handle10.1021/j100878a501 Occurrence Handle1:CAS:528:DyaF28XksVCrt70%3D

  2. 2

    J.O.M. Bockris S.U.M. Khan (1983) Appl. Phys. Lett. 42 124–125 Occurrence Handle10.1063/1.93745 Occurrence Handle1:CAS:528:DyaL3sXmtF2nuw%3D%3D

  3. 3

    A. Frumkin B. Damaskin (1977) J. Electroanal. Chem. 79 259–266 Occurrence Handle10.1016/S0022-0728(77)80447-6 Occurrence Handle1:CAS:528:DyaE2sXkslGlsL4%3D

  4. 4

    A.N. Frumkin B.B. Damaskin (1975) Dokl. Akad. Nauk. SSR. 221 395–398 Occurrence Handle1:CAS:528:DyaE2MXksV2qu7o%3D

  5. 5

    E. Kanevsky (1950) Zhurnal Fizicheskoi Khimii (Russ. J. Phys. Chem.) 24 1511–1514

  6. 6

    H. Reiss A. Heller (1985) J. Phys. Chem. 89 4207 Occurrence Handle10.1021/j100266a013 Occurrence Handle1:CAS:528:DyaL2MXltFajtLc%3D

  7. 7

    R. Parsons, in: Standard Potentials in Aqueous Solution, No. 2, eds. A.J. Bard, R. Parsons and J. Jordan (Marcel Dekker, NewYork, 1985).

  8. 8

    R. Gomer G. Tryson (1977) J. Chem. Phys. 66 4413–4424 Occurrence Handle10.1063/1.433746 Occurrence Handle1:CAS:528:DyaE2sXkvFamt78%3D

  9. 9

    W.N. Hansen G.J. Hansen (1987) Phys. Rev. Lett. 59 1049–1052 Occurrence Handle10.1103/PhysRevLett.59.1049 Occurrence Handle1:CAS:528:DyaL2sXmtVOhtb4%3D

  10. 10

    H. Gerischer W. Ekardt (1983) Appl. Phys. Lett. 43 393–395 Occurrence Handle10.1063/1.94356 Occurrence Handle1:CAS:528:DyaL3sXltlShsr0%3D

  11. 11

    D.L. Rath D.M. Kolb (1981) Surf. Sci. 109 641–647 Occurrence Handle10.1016/0039-6028(81)90432-5 Occurrence Handle1:CAS:528:DyaL3MXmtFWrtL8%3D

  12. 12

    D.M. Kolb (1987) Zeitschrift fuer Physikalische Chemie Neue Folge 154 179–199 Occurrence Handle1:CAS:528:DyaL2sXlsVenu7c%3D

  13. 13

    A.D. Battisti S. Trasatti (1977) J. Chim. Phys. 74 60

  14. 14

    S. Trasatti (1986) Pure Appl. Chem. 58 955–966 Occurrence Handle1:CAS:528:DyaL28XksFSksLk%3D

  15. 15

    S. Trasatti (1990) Electrochim. Acta 35 269–271 Occurrence Handle10.1016/0013-4686(90)85069-Y Occurrence Handle1:CAS:528:DyaK3cXos1KntQ%3D%3D

  16. 16

    S. Trasatti (1991) Electrochim. Acta 36 1657–1667 Occurrence Handle10.1016/0013-4686(91)85023-Z

  17. 17

    E.R. Kötz H. Neff K. Müller (1986) J. Electroanal. Chem. 215 331–344 Occurrence Handle10.1016/0022-0728(86)87026-7

  18. 18

    Z. Samec B.W. Johnson K. Doblhofer (1992) Suf. Sci. 264 440–448 Occurrence Handle10.1016/0039-6028(92)90200-P Occurrence Handle1:CAS:528:DyaK38XhvVent7Y%3D

  19. 19

    D. Tsiplakides C.G. Vayenas (2001) J. Electrochem. Soc. 148 E189–E202 Occurrence Handle10.1149/1.1362547 Occurrence Handle1:CAS:528:DC%2BD3MXjs1WrsLw%3D

  20. 20

    C.G. Vayenas S. Bebelis S. Ladas (1990) Nature 343 625–627 Occurrence Handle10.1038/343625a0 Occurrence Handle1:CAS:528:DyaK3cXitVKmsr8%3D

  21. 21

    S. Ladas S. Bebelis C.G. Vayenas (1991) Surf. Sci. 251/252 1062–1068 Occurrence Handle10.1016/0039-6028(91)91151-M

  22. 22

    J. Nicole D. Tsiplakides S. Wodiunig C. Comninellis (1997) J. Electrochem. Soc. 144 L312–L314 Occurrence Handle10.1149/1.1838143 Occurrence Handle1:CAS:528:DyaK1cXhtFWktQ%3D%3D

  23. 23

    H.L. Skriver N.M. Rosengaard (1992) Phys. Rev. B 45 9410–9412 Occurrence Handle10.1103/PhysRevB.45.9410

  24. 24

    C.G. Vayenas S. Bebelis C. Pliangos S. Brosda D. Tsiplakides (2001) In Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion and Metal-Support Interactions KluwerAcademic/Plenum Publishers New York

  25. 25

    S.G. Neophytides C.G. Vayenas (1995) J. Phys. Chem. 99 17063–17067 Occurrence Handle10.1021/j100047a001 Occurrence Handle1:CAS:528:DyaK2MXptVeitr0%3D

  26. 26

    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, in: The Electrochemical Activation of Catalysis, No. 29, eds. J.O.M. Bockris, B.E. Conway and R.E. White (Kluwer Academic/Plenum Publishers, New York, 1996) pp. 57–202.

  27. 27

    I. Riess C.G. Vayenas (2003) Solid State Ionics 159 IssueID3–4 313–329 Occurrence Handle10.1016/S0167-2738(03)00080-8 Occurrence Handle1:CAS:528:DC%2BD3sXjsVens7s%3D

  28. 28

    J.M. Bockris S.U.M. Khan (1993) In Surface Electrochemistry: A Molecular Level Approach Plenum Press New York

  29. 29

    J. Hölzl F.K. Schulte (1979) In Work Function of Metals Springer-Verlag Berlin

  30. 30

    D.E. Eastman (1970) Phys. Rev. B 2 1 Occurrence Handle10.1103/PhysRevB.2.1

  31. 31

    L.P. Mosteller T. Huen F. Wooten (1969) Phys. Rev. 184 364 Occurrence Handle10.1103/PhysRev.184.364 Occurrence Handle1:CAS:528:DyaF1MXltVKltr4%3D

  32. 32

    S. Neophytides D. Tsiplakides P. Stonehart M. Jaksic C.G. Vayenas (1994) Nature 370 45–47 Occurrence Handle10.1038/370045a0 Occurrence Handle1:CAS:528:DyaK2cXls1Gktbg%3D

  33. 33

    S.G. Neophytides D. Tsiplakides P. Stonehart M.M. Jaksic C.G. Vayenas (1996) J. Phys. Chem. 100 14803–14814 Occurrence Handle10.1021/jp960971u Occurrence Handle1:CAS:528:DyaK28Xksl2gt7w%3D

  34. 34

    A. Wieckowski (2000) In Interfacial Electrochemistry Theory Experiments and Applications Marcel Dekker New York

  35. 35

    P. Wasczuk A. Wieckowski P. Zelenay S. Gottesfeld C. Contanceau J.M. Leger C. Lamy (2001) J. Electroanal. Chem. 511 55 Occurrence Handle10.1016/S0022-0728(01)00559-9

  36. 36

    J.D. Jackson (1975) In Classical Electrodynamics John Wiley & Sons New York

  37. 37

    J.O.M. Bockris A.K.M. Reddy M. Gamboa-Aldeco (2000) In Modern Electrochemistry, No. 2A Fundamental of Electrodics, 2B Electrodics in Chemistry, Engineering, Biology, and Environmental Science Kluwer Academic/Plenum Publishers New York

  38. 38

    D. Tsiplakides C.G. Vayenas (2002) Solid State Ionics 152–153 625–639 Occurrence Handle10.1016/S0167-2738(02)00396-X

  39. 39

    J.O.M. Bockris S.D. Argade (1968) J. Chem. Phys. 49 5133 Occurrence Handle10.1063/1.1670009 Occurrence Handle1:CAS:528:DyaF1MXktleguw%3D%3D

Download references

Author information

Correspondence to C. G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsiplakides, D., Archonta, D. & Vayenas, C.G. Absolute potential measurements in solid and aqueous electrochemistry using two Kelvin probes and their implications for the electrochemical promotion of catalysis. Top Catal 44, 469–479 (2007). https://doi.org/10.1007/s11244-006-0139-x

Download citation

Keywords

  • absolute potential
  • work function
  • Kelvin probe
  • emersed electrodes
  • aqueous solutions
  • Daniel cell
  • YSZ