Topics in Catalysis

, Volume 44, Issue 3, pp 469–479 | Cite as

Absolute potential measurements in solid and aqueous electrochemistry using two Kelvin probes and their implications for the electrochemical promotion of catalysis

Article

The concept of absolute electrode potential in aqueous and solid electrochemistry is discussed in light of the first experimental investigation utilizing a two Kelvin probe system which allows for direct in situ measurement of the work functions of both the, emersed or spillover modified, working and reference electrodes.

In both cases, i.e. emersed electrodes in aqueous electrochemistry and spillover-modified electrodes in solid electrochemistry, it is found that the following two equations relate the working–reference electrode potential difference, UWR, and the work functions, ΦW and ΦR of the emersed or spillover-modified working and reference electrodes:
$${eU_{\rm WR}=\Phi_{\rm W}-\Phi_{\rm R}}$$
$${e\Delta U_{\rm WR}=\Delta \Phi_{\rm W}}$$
where UWR is varied either by varying the gaseous composition or via a potentiostat. These equations show that the work function of emersed electrodes in aqueous electrochemistry or of spillover-modified electrodes in solid state electrochemistry is the natural choice of the absolute electrode potential:
$${U_{\rm abs}=\Phi_{\rm W}/e}$$

The value \({{U_{{\rm H}_2}^{0}(\hbox{abs})=4.46\pm 0.15\,\hbox{V}}}\) was obtained as the absolute potential value of the H2/H+ electrode in aqueous solutions at \({{p_{{\rm H}_2}=}1\,\hbox{bar}}\), pH = 0 and T = 298 K, while the value of \({{U_{{\rm O}_2}^{0}(\hbox{abs})=5.14\pm 0.05\,\hbox{V}}}\) was measured as the absolute potential value of the O2/O2− electrode in YSZ (8 mol% Y2O3-stabilized-ZrO2) at \({{p_{{\rm O}_2}=1\,{\rm bar}}}\) and T = 673 K.

Keywords

absolute potential work function Kelvin probe emersed electrodes aqueous solutions Daniel cell YSZ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gileadi, E., Argade, S.D., Bockris, J.O.M. 1966J. Phys. Chem.7020442046CrossRefGoogle Scholar
  2. 2.
    Bockris, J.O.M., Khan, S.U.M. 1983Appl. Phys. Lett.42124125CrossRefGoogle Scholar
  3. 3.
    Frumkin, A., Damaskin, B. 1977J. Electroanal. Chem.79259266CrossRefGoogle Scholar
  4. 4.
    Frumkin, A.N., Damaskin, B.B. 1975Dokl. Akad. Nauk. SSR.221395398Google Scholar
  5. 5.
    Kanevsky, E. 1950Zhurnal Fizicheskoi Khimii (Russ. J. Phys. Chem.)2415111514Google Scholar
  6. 6.
    Reiss, H., Heller, A. 1985J. Phys. Chem.894207CrossRefGoogle Scholar
  7. 7.
    R. Parsons, in: Standard Potentials in Aqueous Solution, No. 2, eds. A.J. Bard, R. Parsons and J. Jordan (Marcel Dekker, NewYork, 1985).Google Scholar
  8. 8.
    Gomer, R., Tryson, G. 1977J. Chem. Phys.6644134424CrossRefGoogle Scholar
  9. 9.
    Hansen, W.N., Hansen, G.J. 1987Phys. Rev. Lett.5910491052CrossRefGoogle Scholar
  10. 10.
    Gerischer, H., Ekardt, W. 1983Appl. Phys. Lett.43393395CrossRefGoogle Scholar
  11. 11.
    Rath, D.L., Kolb, D.M. 1981Surf. Sci.109641647CrossRefGoogle Scholar
  12. 12.
    Kolb, D.M. 1987Zeitschrift fuer Physikalische Chemie Neue Folge154179199Google Scholar
  13. 13.
    Battisti, A.D., Trasatti, S. 1977J. Chim. Phys.7460Google Scholar
  14. 14.
    Trasatti, S. 1986Pure Appl. Chem.58955966Google Scholar
  15. 15.
    Trasatti, S. 1990Electrochim. Acta35269271CrossRefGoogle Scholar
  16. 16.
    Trasatti, S. 1991Electrochim. Acta3616571667CrossRefGoogle Scholar
  17. 17.
    Kötz, E.R., Neff, H., Müller, K. 1986J. Electroanal. Chem.215331344CrossRefGoogle Scholar
  18. 18.
    Samec, Z., Johnson, B.W., Doblhofer, K. 1992Suf. Sci.264440448CrossRefGoogle Scholar
  19. 19.
    Tsiplakides, D., Vayenas, C.G. 2001J. Electrochem. Soc.148E189E202CrossRefGoogle Scholar
  20. 20.
    Vayenas, C.G., Bebelis, S., Ladas, S. 1990Nature343625627CrossRefGoogle Scholar
  21. 21.
    Ladas, S., Bebelis, S., Vayenas, C.G. 1991Surf. Sci.251/25210621068CrossRefGoogle Scholar
  22. 22.
    Nicole, J., Tsiplakides, D., Wodiunig, S., Comninellis, C. 1997J. Electrochem. Soc.144L312L314CrossRefGoogle Scholar
  23. 23.
    Skriver, H.L., Rosengaard, N.M. 1992Phys. Rev. B4594109412CrossRefGoogle Scholar
  24. 24.
    Vayenas, C.G., Bebelis, S., Pliangos, C., Brosda, S., Tsiplakides, D. 2001In Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion and Metal-Support InteractionsKluwerAcademic/Plenum PublishersNew YorkGoogle Scholar
  25. 25.
    Neophytides, S.G., Vayenas, C.G. 1995J. Phys. Chem.991706317067CrossRefGoogle Scholar
  26. 26.
    C.G. Vayenas, M.M. Jaksic, S. Bebelis and S.G. Neophytides, in: The Electrochemical Activation of Catalysis, No. 29, eds. J.O.M. Bockris, B.E. Conway and R.E. White (Kluwer Academic/Plenum Publishers, New York, 1996) pp. 57–202.Google Scholar
  27. 27.
    Riess, I., Vayenas, C.G. 2003Solid State Ionics159313329CrossRefGoogle Scholar
  28. 28.
    Bockris, J.M., Khan, S.U.M. 1993In Surface Electrochemistry: A Molecular Level ApproachPlenum PressNew YorkGoogle Scholar
  29. 29.
    Hölzl, J., Schulte, F.K. 1979In Work Function of MetalsSpringer-VerlagBerlinGoogle Scholar
  30. 30.
    Eastman, D.E. 1970Phys. Rev. B21CrossRefGoogle Scholar
  31. 31.
    Mosteller, L.P., Huen, T., Wooten, F. 1969Phys. Rev.184364CrossRefGoogle Scholar
  32. 32.
    Neophytides, S., Tsiplakides, D., Stonehart, P., Jaksic, M., Vayenas, C.G. 1994Nature3704547CrossRefGoogle Scholar
  33. 33.
    Neophytides, S.G., Tsiplakides, D., Stonehart, P., Jaksic, M.M., Vayenas, C.G. 1996J. Phys. Chem.1001480314814CrossRefGoogle Scholar
  34. 34.
    Wieckowski, A. 2000In Interfacial Electrochemistry Theory Experiments and ApplicationsMarcel DekkerNew YorkGoogle Scholar
  35. 35.
    Wasczuk, P., Wieckowski, A., Zelenay, P., Gottesfeld, S., Contanceau, C., Leger, J.M., Lamy, C. 2001J. Electroanal. Chem.51155CrossRefGoogle Scholar
  36. 36.
    Jackson, J.D. 1975In Classical ElectrodynamicsJohn Wiley & SonsNew YorkGoogle Scholar
  37. 37.
    Bockris, J.O.M., Reddy, A.K.M., Gamboa-Aldeco, M. 2000In Modern Electrochemistry, No. 2A Fundamental of Electrodics, 2B Electrodics in Chemistry, Engineering, Biology, and Environmental ScienceKluwer Academic/Plenum PublishersNew YorkGoogle Scholar
  38. 38.
    Tsiplakides, D., Vayenas, C.G. 2002Solid State Ionics152–153625639CrossRefGoogle Scholar
  39. 39.
    Bockris, J.O.M., Argade, S.D. 1968J. Chem. Phys.495133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Chemical Process Engineering Research Institute (CPERI)Centre for Research and Technology – Hellas (CERTH)ThessalonikiGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations