Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrocatalysis and electrochemical promotion of CO oxidation in PEM fuel cells: the role of oxygen crossover

  • 176 Accesses

  • 17 Citations

The electrochemical promotion of catalysis (or NEMCA effect) was studied for the CO oxidation and water gas shift reaction on a Pt anode in a polymer electrolyte membrane (PEM) fuel cell. It was found that this phenomenon plays a significant role in a normal fuel cell operation (fuel mixture – air) but not in a hydrogen pumping operation (fuel mixture – H2). This implies that the role of oxygen crossover in the electropromotion (EP) of CO oxidation is vital. During fuel cell operation, the increase in the rate of CO consumption is 2.5 times larger than the electrochemical rate, I/2F of CO oxidation, while for oxygen bleeding conditions (fuel mixture + O2−air) the increase is five times larger than I/2F. This shows that the catalytic properties of the Pt anode are significantly modified by varying the catalyst potential. In order to confirm the role of oxygen crossover, Nafion membranes (117, 1135) with different thickness, were studied. The results show that upon decreasing the membrane thickness the crossover is increased and thus the electrochemical promotion effect becomes more pronounced.

This is a preview of subscription content, log in to check access.

References

  1. 1

    C.G. Vayenas S. Bebelis S. Ladas (1990) Nature 343 625 Occurrence Handle10.1038/343625a0 Occurrence Handle1:CAS:528:DyaK3cXitVKmsr8%3D

  2. 2

    C.G. Vayenas S. Bebelis C. Pliangos S. Brosda D. Tsiplakides (2001) Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion and Metal-Support Interactions Kluwer Academic/Plenum Publishers New York

  3. 3

    R.M. Lambert F. Williams A. Palermo M.S. Tihkov (2000) Topics Catal. 13 91 Occurrence Handle10.1023/A:1009076720641 Occurrence Handle1:CAS:528:DC%2BD3cXms1GisL8%3D

  4. 4

    J. Nicole D. Tsiplakides S. Wodiunig C. Comninellis (1997) J. Electrochem. Soc. 144 1312 Occurrence Handle10.1149/1.1838143

  5. 5

    S. Neophytides D. Tsiplakides P. Stonehart M. Jaksic C.G. Vayenas (1994) Nature 370 292 Occurrence Handle10.1038/370045a0

  6. 6

    C.G. Vayenas S. Brosda C. Pliangos (2003) J. Catal. 216 487 Occurrence Handle10.1016/S0021-9517(02)00127-6 Occurrence Handle1:CAS:528:DC%2BD3sXjvVCmsro%3D

  7. 7

    M. Wagner N. Schulze (2003) Electrochim. Acta 48 3899 Occurrence Handle10.1016/S0013-4686(03)00528-0 Occurrence Handle1:CAS:528:DC%2BD3sXnvF2rtrc%3D

  8. 8

    S.J. Lee S. Mukerjee E.A. Ticianelli J. McBreen (1999) Electrochim. Acta 44 3283 Occurrence Handle10.1016/S0013-4686(99)00052-3 Occurrence Handle1:CAS:528:DyaK1MXjslGisro%3D

  9. 9

    S. Gottesfeld J. Pafford (1988) J. Electrochem. Soc. 135 2651 Occurrence Handle10.1149/1.2095401 Occurrence Handle1:CAS:528:DyaL1cXmtFemt7s%3D

  10. 10

    A.H. Thomason T.R. Lalk A.J. Appleby (2004) J. Power Sources 135 204 Occurrence Handle10.1016/j.jpowsour.2004.03.070 Occurrence Handle1:CAS:528:DC%2BD2cXmvVGksr0%3D

  11. 11

    L.P.L. Carrette K.A. Friedrich M. Huber U. Stimming (2001) Phys. Chem. 3 320 Occurrence Handle10.1039/b005843m Occurrence Handle1:CAS:528:DC%2BD3MXlsVWjsA%3D%3D

  12. 12

    J. Divisek H.F. Oetjen V. Peinecke V.M. Schmidt U. Stimming (1998) Electrochim. Acta 43 3811 Occurrence Handle10.1016/S0013-4686(98)00140-6 Occurrence Handle1:CAS:528:DyaK1cXlvVWmt78%3D

  13. 13

    C. He H.R. Kunz J.M. Fenton (2001) J. Electrochem. Soc. 148 A1116 Occurrence Handle10.1149/1.1398275 Occurrence Handle1:CAS:528:DC%2BD3MXnsl2gu7k%3D

  14. 14

    A. Katsaounis S.P. Balomenou D. Tsiplakides M. Tsampas C.G. Vayenas (2005) Electrochim. Acta 50 5132 Occurrence Handle10.1016/j.electacta.2005.02.073 Occurrence Handle1:CAS:528:DC%2BD2MXpsF2hsLw%3D

  15. 15

    M.N. Tsampas A. Pikos S. Brosda A. Katsaounis C.G. Vayenas (2006) Electrochim. Acta 51 2743 Occurrence Handle10.1016/j.electacta.2005.08.021 Occurrence Handle1:CAS:528:DC%2BD28XhslKnsro%3D

  16. 16

    R. Liu E.S. Smotkin (2002) J. Electroanal. Chem. 535 49 Occurrence Handle10.1016/S0022-0728(02)01144-0 Occurrence Handle1:CAS:528:DC%2BD38XosFahtrY%3D

  17. 17

    B. Gurau E.S. Smotkin (2002) J. Power Sources 112 339 Occurrence Handle10.1016/S0378-7753(02)00445-7 Occurrence Handle1:CAS:528:DC%2BD38XotlKnsL4%3D

  18. 18

    D. Tsiplakides S. Neophytides O. Enea M.M. Jaksic C.G. Vayenas (1997) J. Electrochem. Soc. 144 IssueID6 2072 Occurrence Handle10.1149/1.1837744 Occurrence Handle1:CAS:528:DyaK2sXksVent70%3D

  19. 19

    L. Ploense M. Salazar B. Gurau E.S. Smotkin (2000) Solid State Ionics 136–137 713 Occurrence Handle10.1016/S0167-2738(00)00567-1

  20. 20

    L. Ploense M. Salazar B. Gurau E.S. Smotkin (1997) JACS 119 11550 Occurrence Handle10.1021/ja9728841 Occurrence Handle1:CAS:528:DyaK2sXnt1Cjs70%3D

Download references

Author information

Correspondence to C. G. Vayenas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sapountzi, F., Tsampas, M.N. & Vayenas, C.G. Electrocatalysis and electrochemical promotion of CO oxidation in PEM fuel cells: the role of oxygen crossover. Top Catal 44, 461–468 (2007). https://doi.org/10.1007/s11244-006-0138-y

Download citation

Keywords

  • electrochemical promotion (NEMCA)
  • PEM fuel cell
  • CO-poisoning
  • oxygen crossover
  • PROX