Topics in Catalysis

, Volume 44, Issue 3, pp 451–460 | Cite as

Promotional effects on a PtRu/C catalyst-electrode interfaced with aqueous electrolytes: electrochemical metal support interaction (EMSI) and electrochemical promotion of catalysis (EPOC)

  • D. Labou
  • S. G. Neophytides
The kinetics of the catalytic oxidation of H2 on PtRu/C gas diffusion electrode (GDE) was studied by interfacing the electrode with aqueous electrolytes at different pH values. The conducting electrolytes were aqueous solutions of varying concentrations of KOH and HClO4 so that the pH was ranging between 2 and 13. The open circuit catalytic reaction rates exhibit the lowest value at pH = 13, while the catalytic activity is progressively increasing with decreasing pH values. The enhancement of the open circuit catalytic reaction rate can be even an order of magnitude higher in the acidic solution with respect to the alkaline electrolyte. It is shown that the nature of the aqueous electrolyte plays the role of an active catalyst support for the PtRu/C electrode, which drastically affects its catalytic properties. This is substantiated through the electrochemical equilibrium charge transfer reactions at the catalyst-electrode/electrolyte interface:
$${ \eqalign{ \hbox{H}_{3}\hbox{O}^{+}+\hbox{e}^{-}+\hbox{S}\leftrightarrow\hbox{H}_ {\rm ad}+\hbox{H}_{2}\hbox{O}\ (\hbox{acidic})\cr \hbox{OH}^{-}+\hbox{S}\leftrightarrow\hbox{OH}_{\rm ad}+ \hbox{e}^{-}\ (\hbox{alkaline}) }}$$
According to the aforementioned interaction, termed electrochemical metal support interaction (EMSI), the electrochemical potential of the electrons at the catalyst Fermi level is equalised with the electrochemical potential of the solvated electron in the aqueous electrolyte. The electrochemical promotion experiments carried out at various pH values showed that the non Faradaic modification of the catalytic activity is more intense when the catalyst-electrode is interfaced with electrolytes with high pH values where the OH ionic conduction prevails. It was concluded that similar to the solid state electrochemical systems the non Faradaic electrochemical modification of the catalytic activity proceeds through the formation of a polar adsorbed promoting layer of \({\hbox{OH}_{\rm ad}^{\delta-}}\), electrochemically supplied by the OH species, at the three phase boundaries of the gas exposed gas diffusion catalyst-electrode surface.


NEMCA effect Pt-Ru/C gas diffusion electrodes hydrogen oxidation EMSI effect metal support interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vayenas, C.G, Bebelis, S., Pliangos, C., Brosda, S., Tsiplakides, D. 2001Electrochemical Activation of Catalysis: promotion, electrochemical promotion and metal-support interactions, edsKluwer Academic/Plenum PublishersNew YorkGoogle Scholar
  2. 2.
    Anastasijevic, N.A., Baltruschat, H., Heitbaum, J. 1993Electrochim. Acta381067CrossRefGoogle Scholar
  3. 3.
    Neophytides, S.G., Tsiplakides, D., Stonehart, P., Jaksic, M.M., Vayenas, C.G. 1994Nature37045CrossRefGoogle Scholar
  4. 4.
    Neophytides, S., Tsiplakides, D., Stonehart, P., Jaksic, M., Vayenas, C.G. 1996J. Phys.Chem.10014803CrossRefGoogle Scholar
  5. 5.
    N.Anastasijevic, E. Hillrichs, K. Lohrberg and G. Ungar, U.S Patent 5,637,206 (1997)Google Scholar
  6. 6.
    Lamy-Pitara, E., El Mouahid, S., Barbier, J. 2000Electrochim. Acta454299CrossRefGoogle Scholar
  7. 7.
    Vuković, M., Čukman, D. 1999J. Electroanalytical Chemistry474167CrossRefGoogle Scholar
  8. 8.
    Michaelides, A., Hu, P. 2001J. Am. Chem. Soc.1234235CrossRefGoogle Scholar
  9. 9.
    Völkening, S., Bedürftig, K., Jacobi, K., Wintterlin, J., Ertl, G. 1999Phys. Rev. Let.832672CrossRefGoogle Scholar
  10. 10.
    Bockris, J.O’M., Reddy, A.K., Gamboa-Aldeco, M. 2000Modern Electrochemistry: Fundamentals of Electrodics 2A2Kluwer Academic/Plenum PublishersNew YorkGoogle Scholar
  11. 11.
    Gileadi, E. 1993Electrode Kinetics for Chemists, Chemical Engineers and Materials ScientistsVCH PublishersNew YorkGoogle Scholar
  12. 12.
    Couturier, G., Kirk, D.W., Hyde, P.J., Srinivasan, S. 1987Electrochim. Acta32995CrossRefGoogle Scholar
  13. 13.
    Conway, B.E., Tilak, B.V. 2002Electrochim. Acta473571CrossRefGoogle Scholar
  14. 14.
    Lee, S.J., Mukerjee, S., Ticianelli, E.A., McBreen, J. 1999Electrochim. Acta443283CrossRefGoogle Scholar
  15. 15.
    Vayenas, C.G., Brosda, S., Pliangos, C. 2003Electrochim. Acta483779Google Scholar
  16. 16.
    Trasatti S. In: O’M. Bockris J., Conway B.E., Yeager E., (eds), Comprehensive Treatise of Electrochemistry:The Double Layer. Plenum Press, New YorkGoogle Scholar
  17. 17.
    Bockris, J.O’M., Khan, S.U.M. 1983Appl. Phys. Lett.42124CrossRefGoogle Scholar
  18. 18.
    Tsiplakides, D., Vayenas, C.G. 2001J. Electrochem. Soc.148E189CrossRefGoogle Scholar
  19. 19.
    Nilsson, A., Pettersson, L.G.M., Hammer, B., Bligaard, T., Christensen, C.H., Nørskov, J.K. 2005Catal. Let.100111CrossRefGoogle Scholar
  20. 20.
    Vayenas, C.G., Brosda, S., Pliangos, C. 2001J. Catal.203329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesRio, PatrasGreece

Personalised recommendations