Topics in Catalysis

, Volume 44, Issue 3, pp 435–449 | Cite as

Electrochemical promotion of catalysis controlled by chemical potential difference across a mixed ionic-electronic conducting ceramic membrane – an example of wireless NEMCA

  • D. Poulidi
  • A. Thursfield
  • I. S. Metcalfe

A La0.6Sr0.4Co0.2F0.8O3 mixed ionic electronic conducting (MIEC) membrane was used in a dual chamber reactor for the promotion of the catalytic activity of a platinum catalyst for ethylene oxidation. By controlling the oxygen chemical potential difference across the membrane, a driving force for oxygen ions to migrate across the membrane and backspillover onto the catalyst surface is established. The reaction is then promoted by the formation of a double layer of oxide anions on the catalyst surface. The electronic conductivity of the membrane material eliminates the need for an external circuit to pump the promoting oxide ion species through the membrane and onto the catalyst surface. This renders this “wireless” system simpler and more amenable for large-scale practical application. Preliminary experiments show that the reaction rate of ethylene oxidation can indeed be promoted by almost one order of magnitude upon exposure to an oxygen atmosphere on the sweep side of the membrane reactor, and thus inducing an oxygen chemical potential difference across the membrane, as compared to the rate under an inert sweep gas. Moreover, the rate does not return to its initial unpromoted value upon cessation of the oxygen flow on the sweep side, but remains permanently promoted. A number of comparisons are drawn between the classical electrochemical promotion that utilises an external circuit and the “wireless” system that utilises chemical potential differences. In addition a ‚surface oxygen capture’ model is proposed to explain the permanent promotion of the catalyst activity.


electrochemical promotion chemical potential difference surface oxygen capture MIEC membrane La0.6Sr0.4Co0.2F0.8O3 ethylene oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vayenas, C.G. 1988Solid State Ionics28–301521CrossRefGoogle Scholar
  2. 2.
    Prichard, J. 1990Nature343592CrossRefGoogle Scholar
  3. 3.
    Vayenas, C.G., Bebelis, S., Pliangos, C., Brosda, S., Tsiplakides, D. 2001In Electrochemical Activation of Catalysis: Promotion, Electrochemical Promotion Metal-Support InteractionsKluwer Academic/PlenumNew YorkGoogle Scholar
  4. 4.
    Foti, G., Stankovic, V., Bolzonella, I., Comninellis, C. 2002J. Electroanal. Chem.532191CrossRefGoogle Scholar
  5. 5.
    Yi, J., Kaloyiannis, A., Vayenas, C.G. 1993Electrochim. Acta38/172533CrossRefGoogle Scholar
  6. 6.
    Emery, D.A., Middleton, P.H., Metcalfe, I.S. 1998Surf. Sci.405308CrossRefGoogle Scholar
  7. 7.
    Tsiplakides, D., Neophytides, S., Vayenas, C.G. 2000Solid State Ionics136–137839CrossRefGoogle Scholar
  8. 8.
    Tang, H.R., Wang, W.N., Fan, K.N. 2002Chem. Phys. Lett.355410CrossRefGoogle Scholar
  9. 9.
    Ladas, S., Kenou, S., Bebelis, S., Vayenas, C.G. 1993J. Phys. Chem.978845CrossRefGoogle Scholar
  10. 10.
    Vayenas, C.G., Bebelis, S., Yentekakis, I.V., Karavasilis, C., Yi, J. 1994Solid State Ionics72321CrossRefGoogle Scholar
  11. 11.
    Imbhil, R., Janek, J. 2000Solid State Ionics136–137699CrossRefGoogle Scholar
  12. 12.
    Katsaounis, A., Nikopoulou, Z., Verykios, X.E., Vayenas, C.G. 2004J. Catal.222192CrossRefGoogle Scholar
  13. 13.
    Baker, R.T., Metcalfe, I.S., Middleton, P.H. 1995J. Catal.15521CrossRefGoogle Scholar
  14. 14.
    Vayenas C.G., Archonda D., Tsiplakides D. (2003) J. Electroanal. Chem. 1Google Scholar
  15. 15.
    Makri, M., Vayenas, C.G., Bebelis, S., Besocke, K.H., Cavalca, C. 1996Surf. Sci.369351CrossRefGoogle Scholar
  16. 16.
    Frantzis, A.D., Bebelis, S., Vayenas, C.G. 2000Solid State Ionics136–137863CrossRefGoogle Scholar
  17. 17.
    Kek, D., Mogensen, M., Pejovnik, S. 2001J. Electrochem. Soc.14878CrossRefGoogle Scholar
  18. 18.
    Vayenas, C.G., Tsiplakides, D. 2000Surf. Sci.46723CrossRefGoogle Scholar
  19. 19.
    Bebelis, S., Makri, M., Buekenhoudt, A., Luyten, J., Brosda, S., Petrolekas, P., Pliangos, C., Vayenas, C.G. 2000Solid State Ionics12933CrossRefGoogle Scholar
  20. 20.
    Vayenas, C.G., Lee, B., Michaels, J. 1980J. Catal.6636CrossRefGoogle Scholar
  21. 21.
    Vayenas, C.G., Georgakis, C., Michaels, J., Tormo, J. 1981J. Catal.67348CrossRefGoogle Scholar
  22. 22.
    Bebelis, S., Vayenas, C.G. 1989J. Catal.118125CrossRefGoogle Scholar
  23. 23.
    Vayenas, G., Brosda, S., Pliangos, C. 2001J. Catal.203329CrossRefGoogle Scholar
  24. 24.
    Vayenas, C.G., Bebelis, S., Despotopoulou, M. 1991J. Catal.128415CrossRefGoogle Scholar
  25. 25.
    Petrolekas Brosda, P.D. S., Vayenas, C.G. 1998J. Electrochem. Soc.1451469CrossRefGoogle Scholar
  26. 26.
    Makri, M., Buekenhoudt, A., Luyten, J., Vayenas, C.G. 1996Ionics2282CrossRefGoogle Scholar
  27. 27.
    Thursfield, A., Brosda, S., Pliangos, C., Schober, T., Vayenas, C.G. 2003Elctrochim. Acta483779CrossRefGoogle Scholar
  28. 28.
    Poulidi, D., Castillo-del-Rio, M.A., Salar, R., Thursfield, A., Metcalfe, I.S. 2003Solid State Ionics162–163305CrossRefGoogle Scholar
  29. 29.
    Pliangos, C., Yentekakis, I.V., Ladas, S., Vayenas, C.G. 1996J. Catal.159189CrossRefGoogle Scholar
  30. 30.
    Petrolekas, P.D., Balomenou, S., Vayenas, C.G. 1998J. Electrochem. Soc.1451202CrossRefGoogle Scholar
  31. 31.
    Balomenou, S., Pitselis, G., Polydoros, D., Giannikos, A., Vradis, A., Frenzel, A., Pliangos, C., Putter, H., Vayenas, C.G. 2000Solid State Ionics136–137857CrossRefGoogle Scholar
  32. 32.
    Teraoka, Y., Zang, H.M., Okamato, K., Yamazoe, N. 1988Mat. Res. Bull.2351CrossRefGoogle Scholar
  33. 33.
    Stevenson, J.W., Armstrong, T.R., Carneim, R.D., Pederson, L.R., Weber, W.J. 1996J. Electrochem. Soc.1432722CrossRefGoogle Scholar
  34. 34.
    Mineshinge, A., Izutsu, J., Nakamura, M., Nigaki, K., Abe, J., Kobune, M., Fujii, S., Tetsuo, Y. 2005Solid State Ionics1761145CrossRefGoogle Scholar
  35. 35.
    Xu, S.J., Thomson, W.J. 1999Chem. Eng. Sci.543839CrossRefGoogle Scholar
  36. 36.
    Chen, C.-S., Zhang, Z.-P., Jiang, G.-S., Fan, C.-G., Liu, W. 2001Chem. Mater.132729Google Scholar
  37. 37.
    Douvartzides, S., Tsiakaras, P. 2000Solid State Ionics136–137849CrossRefGoogle Scholar
  38. 38.
    Gaillard, F., Xingang, Li, Uray, M., Vernoux, P. 2004Catal. Lett.96177183CrossRefGoogle Scholar
  39. 39.
    Nicole, J., Comninellis, Ch. 2000Solid State Ionics136–137687CrossRefGoogle Scholar
  40. 40.
    Kokkofitis, C., Karagiannakis, G., Zisekas, S., Stoukides, M. 2004J. Catal.234476CrossRefGoogle Scholar
  41. 41.
    Wang, H., Tablet, C., Yang, W., Caro, J. 2005Materials Letters593750CrossRefGoogle Scholar
  42. 42.
    Thusfield, A., Metcalfe, I.S. 2006Methane oxidation in a mixed-ionic electronic conducting ceramic hollow fibre reactor moduleJ. Solid State Electrochem.10604CrossRefGoogle Scholar
  43. 43.
    Metcalfe, I.S. 2001J. Catal.199247CrossRefGoogle Scholar
  44. 44.
    Metcalfe, I.S. 2001J. Catal.199259CrossRefGoogle Scholar
  45. 45.
    Baranova, E.A., Foti, G., Comninellis, C. 2004Electrochem. Commun.6170CrossRefGoogle Scholar
  46. 46.
    Jin, W., Li, S., Huang, P., Xu, N., Shi, J., Lin, Y.S. 2000J. Membr. Sci.16613CrossRefGoogle Scholar
  47. 47.
    Martin, M. 2003J. Chem. Thermodynam.351291CrossRefGoogle Scholar
  48. 48.
    Lein, H.L., Wiik, K., Grande, T. 2006Kinetic demixing and decomposition of oxygen permeable membranesSolid State Ionics1771587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Advanced MaterialsUniversity of NewcastleNewcastle-upon-TyneUK

Personalised recommendations